Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37873200

RESUMO

Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex driver mutations and glioma stem cells (GSCs). The neurodevelopmental transcription factors ASCL1 and OLIG2 are co-expressed in GBMs, but their role in regulating the heterogeneity and hierarchy of GBM tumor cells is unclear. Here, we show that oncogenic driver mutations lead to dysregulation of ASCL1 and OLIG2, which function redundantly to initiate brain tumor formation in a mouse model of GBM. Subsequently, the dynamic levels and reciprocal binding of ASCL1 and OLIG2 to each other and to downstream target genes then determine the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in defining GSCs by upregulating a collection of ribosomal protein, mitochondrial, neural stem cell (NSC), and cancer metastasis genes - all essential for sustaining the high proliferation, migration, and therapeutic resistance of GSCs.

2.
Glia ; 68(12): 2613-2630, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32573857

RESUMO

Glioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem-like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive. Here, we demonstrate that the basic-helix-loop-helix transcription factor ASCL1 regulates transcriptional targets that are central to GBM development, including neural stem cell and glial transcription factors, oncogenic signaling molecules, chromatin modifying genes, and cell cycle and mitotic genes. We also show that the loss of ASCL1 significantly reduces the proliferation of GBMs induced in the brain of a genetically relevant glioma mouse model, resulting in extended survival times. RNA-seq analysis of mouse GBM tumors reveal that the loss of ASCL1 is associated with downregulation of cell cycle genes, illustrating an important role for ASCL1 in controlling the proliferation of GBM.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Encefálicas/genética , Regulação Neoplásica da Expressão Gênica , Genes cdc , Camundongos , Fatores de Transcrição/metabolismo
3.
Transl Oncol ; 11(2): 292-299, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29413762

RESUMO

Small cell lung cancer (SCLC) is an aggressive neuroendocrine carcinoma, designated as a recalcitrant cancer by the National Cancer Institute, in urgent need of new rational therapeutic targets. Previous studies have determined that the basic helix-loop-helix transcription factor achaete-scute homolog 1 (ASCL1) is essential for the survival and progression of a fraction of pulmonary neuroendocrine cancer cells, which include both SCLC and a subset of non-SCLC. Previously, to understand how ASCL1 initiates tumorigenesis in pulmonary neuroendocrine cancer and identify the transcriptional targets of ASCL1, whole-genome RNA-sequencing analysis combined with chromatin immunoprecipitation-sequencing was performed with a series of lung cancer cell lines. From this analysis, we discovered that the gene SCNN1A, which encodes the alpha subunit of the epithelial sodium channel (αENaC), is highly correlated with ASCL1 expression in SCLC. The product of the SCNN1A gene ENaC can be pharmacologically inhibited with amiloride, a drug that has been used clinically for close to 50 years. Amiloride inhibited growth of ASCL1-dependent SCLC more strongly than ASCL1-independent SCLC in vitro and slowed growth of ASCL1-driven SCLC in xenografts. We conclude that SCNN1A/αENaC is a direct transcriptional target of the neuroendocrine lung cancer lineage oncogene ASCL1 that can be pharmacologically targeted with antitumor effects.

4.
Elife ; 62017 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-28850031

RESUMO

The mechanisms that activate some genes while silencing others are critical to ensure precision in lineage specification as multipotent progenitors become restricted in cell fate. During neurodevelopment, these mechanisms are required to generate the diversity of neuronal subtypes found in the nervous system. Here we report interactions between basic helix-loop-helix (bHLH) transcriptional activators and the transcriptional repressor PRDM13 that are critical for specifying dorsal spinal cord neurons. PRDM13 inhibits gene expression programs for excitatory neuronal lineages in the dorsal neural tube. Strikingly, PRDM13 also ensures a battery of ventral neural tube specification genes such as Olig1, Olig2 and Prdm12 are excluded dorsally. PRDM13 does this via recruitment to chromatin by multiple neural bHLH factors to restrict gene expression in specific neuronal lineages. Together these findings highlight the function of PRDM13 in repressing the activity of bHLH transcriptional activators that together are required to achieve precise neuronal specification during mouse development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica no Desenvolvimento , Histona-Lisina N-Metiltransferase/genética , Neurônios Motores/metabolismo , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem da Célula/genética , Embrião de Galinha , Embrião de Mamíferos , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Camundongos , Camundongos Transgênicos , Neurônios Motores/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Tubo Neural/citologia , Tubo Neural/crescimento & desenvolvimento , Tubo Neural/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/genética , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Transdução de Sinais , Medula Espinal/citologia , Medula Espinal/crescimento & desenvolvimento , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo
6.
Cell Rep ; 16(5): 1259-1272, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27452466

RESUMO

Small cell lung carcinoma (SCLC) is a high-grade pulmonary neuroendocrine tumor. The transcription factors ASCL1 and NEUROD1 play crucial roles in promoting malignant behavior and survival of human SCLC cell lines. Here, we find that ASCL1 and NEUROD1 identify heterogeneity in SCLC, bind distinct genomic loci, and regulate mostly distinct genes. ASCL1, but not NEUROD1, is present in mouse pulmonary neuroendocrine cells, and only ASCL1 is required in vivo for tumor formation in mouse models of SCLC. ASCL1 targets oncogenic genes including MYCL1, RET, SOX2, and NFIB while NEUROD1 targets MYC. ASCL1 and NEUROD1 regulate different genes that commonly contribute to neuronal function. ASCL1 also regulates multiple genes in the NOTCH pathway including DLL3. Together, ASCL1 and NEUROD1 distinguish heterogeneity in SCLC with distinct genomic landscapes and distinct gene expression programs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Camundongos , Células Neuroendócrinas/metabolismo , Oncogenes/genética , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Carcinoma de Pequenas Células do Pulmão/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Nat Commun ; 6: 8840, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26567849

RESUMO

Tumours frequently activate genes whose expression is otherwise biased to the testis, collectively known as cancer-testis antigens (CTAs). The extent to which CTA expression represents epiphenomena or confers tumorigenic traits is unknown. In this study, to address this, we implemented a multidimensional functional genomics approach that incorporates 7 different phenotypic assays in 11 distinct disease settings. We identify 26 CTAs that are essential for tumor cell viability and/or are pathological drivers of HIF, WNT or TGFß signalling. In particular, we discover that Foetal and Adult Testis Expressed 1 (FATE1) is a key survival factor in multiple oncogenic backgrounds. FATE1 prevents the accumulation of the stress-sensing BH3-only protein, BCL-2-Interacting Killer (BIK), thereby permitting viability in the presence of toxic stimuli. Furthermore, ZNF165 promotes TGFß signalling by directly suppressing the expression of negative feedback regulatory pathways. This action is essential for the survival of triple negative breast cancer cells in vitro and in vivo. Thus, CTAs make significant direct contributions to tumour biology.


Assuntos
Antígenos de Neoplasias/genética , Carcinogênese/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Fatores de Transcrição/genética , Fator de Crescimento Transformador beta/genética , Adenocarcinoma/genética , Adenocarcinoma/imunologia , Adenocarcinoma/mortalidade , Adenocarcinoma de Pulmão , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/mortalidade , Imunofluorescência , Células HCT116 , Células HEK293 , Humanos , Immunoblotting , Técnicas In Vitro , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/mortalidade , Proteínas de Membrana/genética , Camundongos Endogâmicos NOD , Proteínas Mitocondriais , Transplante de Neoplasias , Neoplasias/imunologia , Neoplasias/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais , Proteína Smad7/genética , Fator de Crescimento Transformador beta/imunologia , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia , Neoplasias de Mama Triplo Negativas/mortalidade , Ubiquitina-Proteína Ligases/genética , Via de Sinalização Wnt
8.
Development ; 142(19): 3416-28, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26443638

RESUMO

V1 interneurons are inhibitory neurons that play an essential role in vertebrate locomotion. The molecular mechanisms underlying their genesis remain, however, largely undefined. Here, we show that the transcription factor Prdm12 is selectively expressed in p1 progenitors of the hindbrain and spinal cord in the frog embryo, and that a similar restricted expression profile is observed in the nerve cord of other vertebrates as well as of the cephalochordate amphioxus. Using frog, chick and mice, we analyzed the regulation of Prdm12 and found that its expression in the caudal neural tube is dependent on retinoic acid and Pax6, and that it is restricted to p1 progenitors, due to the repressive action of Dbx1 and Nkx6-1/2 expressed in the adjacent p0 and p2 domains. Functional studies in the frog, including genome-wide identification of its targets by RNA-seq and ChIP-Seq, reveal that vertebrate Prdm12 proteins act as a general determinant of V1 cell fate, at least in part, by directly repressing Dbx1 and Nkx6 genes. This probably occurs by recruiting the methyltransferase G9a, an activity that is not displayed by the amphioxus Prdm12 protein. Together, these findings indicate that Prdm12 promotes V1 interneurons through cross-repressive interactions with Dbx1 and Nkx6 genes, and suggest that this function might have only been acquired after the split of the vertebrate and cephalochordate lineages.


Assuntos
Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Morfogênese/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Células de Renshaw/fisiologia , Xenopus/embriologia , Animais , Sequência de Bases , Embrião de Galinha , Imunoprecipitação da Cromatina , Biologia Computacional , Primers do DNA/genética , DNA Complementar/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/metabolismo , Imuno-Histoquímica , Hibridização In Situ , Camundongos , Dados de Sequência Molecular , Rombencéfalo/metabolismo , Análise de Sequência de RNA , Especificidade da Espécie , Medula Espinal/metabolismo
9.
J Neurosci ; 35(15): 6028-37, 2015 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-25878276

RESUMO

The intracellular transcriptional milieu wields considerable influence over the induction of neuronal identity. The transcription factor Ptf1a has been proposed to act as an identity "switch" between developmentally related precursors in the spinal cord (Glasgow et al., 2005; Huang et al., 2008), retina (Fujitani et al., 2006; Dullin et al., 2007; Nakhai et al., 2007; Lelièvre et al., 2011), and cerebellum (Hoshino et al., 2005; Pascual et al., 2007; Yamada et al., 2014), where it promotes an inhibitory over an excitatory neuronal identity. In this study, we investigate the potency of Ptf1a to cell autonomously confer a specific neuronal identity outside of its endogenous environment, using mouse in utero electroporation and a conditional genetic strategy to misexpress Ptf1a exclusively in developing cortical pyramidal cells. Transcriptome profiling of Ptf1a-misexpressing cells using RNA-seq reveals that Ptf1a significantly alters pyramidal cell gene expression, upregulating numerous Ptf1a-dependent inhibitory interneuron markers and ultimately generating a gene expression profile that resembles the transcriptomes of both Ptf1a-expressing spinal interneurons and endogenous cortical interneurons. Using RNA-seq and in situ hybridization analyses, we also show that Ptf1a induces expression of the peptidergic neurotransmitter nociceptin, while minimally affecting the expression of genes linked to other neurotransmitter systems. Moreover, Ptf1a alters neuronal morphology, inducing the radial redistribution and branching of neurites in cortical pyramidal cells. Thus Ptf1a is sufficient, even in a dramatically different neuronal precursor, to cell autonomously promote characteristics of an inhibitory peptidergic identity, providing the first example of a single transcription factor that can direct an inhibitory peptidergic fate.


Assuntos
Córtex Cerebral/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas do Tecido Nervoso/metabolismo , Células Piramidais/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Animais , Animais Recém-Nascidos , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Biologia Computacional , Eletroporação , Embrião de Mamíferos , Proteínas do Olho/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Antígeno Ki-67/metabolismo , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/genética , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/metabolismo , Peptídeos/genética , Peptídeos/metabolismo , Proteínas Repressoras/metabolismo , Estatísticas não Paramétricas , Fatores de Transcrição/genética , Tubulina (Proteína)/metabolismo
10.
Proc Natl Acad Sci U S A ; 111(41): 14788-93, 2014 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-25267614

RESUMO

Aggressive neuroendocrine lung cancers, including small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC), represent an understudied tumor subset that accounts for approximately 40,000 new lung cancer cases per year in the United States. No targeted therapy exists for these tumors. We determined that achaete-scute homolog 1 (ASCL1), a transcription factor required for proper development of pulmonary neuroendocrine cells, is essential for the survival of a majority of lung cancers (both SCLC and NSCLC) with neuroendocrine features. By combining whole-genome microarray expression analysis performed on lung cancer cell lines with ChIP-Seq data designed to identify conserved transcriptional targets of ASCL1, we discovered an ASCL1 target 72-gene expression signature that (i) identifies neuroendocrine differentiation in NSCLC cell lines, (ii) is predictive of poor prognosis in resected NSCLC specimens from three datasets, and (iii) represents novel "druggable" targets. Among these druggable targets is B-cell CLL/lymphoma 2, which when pharmacologically inhibited stops ASCL1-dependent tumor growth in vitro and in vivo and represents a proof-of-principle ASCL1 downstream target gene. Analysis of downstream targets of ASCL1 represents an important advance in the development of targeted therapy for the neuroendocrine class of lung cancers, providing a significant step forward in the understanding and therapeutic targeting of the molecular vulnerabilities of neuroendocrine lung cancer.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem da Célula , Tumores Neuroendócrinos/genética , Oncogenes , Carcinoma de Pequenas Células do Pulmão/genética , Adenocarcinoma/genética , Adenocarcinoma/patologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Sobrevivência Celular , Imunoprecipitação da Cromatina , Regulação Neoplásica da Expressão Gênica , Humanos , Imuno-Histoquímica , Tumores Neuroendócrinos/patologia , Prognóstico , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia
11.
Development ; 141(14): 2803-12, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24924197

RESUMO

The proper balance of excitatory and inhibitory neurons is crucial for normal processing of somatosensory information in the dorsal spinal cord. Two neural basic helix-loop-helix transcription factors (TFs), Ascl1 and Ptf1a, have contrasting functions in specifying these neurons. To understand how Ascl1 and Ptf1a function in this process, we identified their direct transcriptional targets genome-wide in the embryonic mouse neural tube using ChIP-Seq and RNA-Seq. We show that Ascl1 and Ptf1a directly regulate distinct homeodomain TFs that specify excitatory or inhibitory neuronal fates. In addition, Ascl1 directly regulates genes with roles in several steps of the neurogenic program, including Notch signaling, neuronal differentiation, axon guidance and synapse formation. By contrast, Ptf1a directly regulates genes encoding components of the neurotransmitter machinery in inhibitory neurons, and other later aspects of neural development distinct from those regulated by Ascl1. Moreover, Ptf1a represses the excitatory neuronal fate by directly repressing several targets of Ascl1. Ascl1 and Ptf1a bind sequences primarily enriched for a specific E-Box motif (CAGCTG) and for secondary motifs used by Sox, Rfx, Pou and homeodomain factors. Ptf1a also binds sequences uniquely enriched in the CAGATG E-box and in the binding motif for its co-factor Rbpj, providing two factors that influence the specificity of Ptf1a binding. The direct transcriptional targets identified for Ascl1 and Ptf1a provide a molecular understanding of how these DNA-binding proteins function in neuronal development, particularly as key regulators of homeodomain TFs required for neuronal subtype specification.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Redes Reguladoras de Genes , Inibição Neural , Neurônios/metabolismo , Medula Espinal/citologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Padronização Corporal/genética , Galinhas , Cromatina/metabolismo , Elementos E-Box/genética , Neurônios GABAérgicos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Glutamatos/metabolismo , Camundongos , Dados de Sequência Molecular , Tubo Neural/citologia , Tubo Neural/embriologia , Tubo Neural/metabolismo , Neurogênese/genética , Neurônios/citologia , Motivos de Nucleotídeos/genética , Ligação Proteica , Medula Espinal/embriologia
12.
Mol Cell Biol ; 33(16): 3166-79, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23754747

RESUMO

The lineage-specific basic helix-loop-helix transcription factor Ptf1a is a critical driver for development of both the pancreas and nervous system. How one transcription factor controls diverse programs of gene expression is a fundamental question in developmental biology. To uncover molecular strategies for the program-specific functions of Ptf1a, we identified bound genomic regions in vivo during development of both tissues. Most regions bound by Ptf1a are specific to each tissue, lie near genes needed for proper formation of each tissue, and coincide with regions of open chromatin. The specificity of Ptf1a binding is encoded in the DNA surrounding the Ptf1a-bound sites, because these regions are sufficient to direct tissue-restricted reporter expression in transgenic mice. Fox and Sox factors were identified as potential lineage-specific modifiers of Ptf1a binding, since binding motifs for these factors are enriched in Ptf1a-bound regions in pancreas and neural tube, respectively. Of the Fox factors expressed during pancreatic development, Foxa2 plays a major role. Indeed, Ptf1a and Foxa2 colocalize in embryonic pancreatic chromatin and can act synergistically in cell transfection assays. Together, these findings indicate that lineage-specific chromatin landscapes likely constrain the DNA binding of Ptf1a, and they identify Fox and Sox gene families as part of this process.


Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Tubo Neural/embriologia , Pâncreas/embriologia , Fatores de Transcrição/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Cromatina/genética , Sequência Consenso , DNA/genética , DNA/metabolismo , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Transgênicos , Tubo Neural/metabolismo , Pâncreas/metabolismo , Ligação Proteica , Fatores de Transcrição SOXB1/metabolismo
13.
Dev Cell ; 25(2): 182-95, 2013 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-23639443

RESUMO

Generating a balanced network of inhibitory and excitatory neurons during development requires precise transcriptional control. In the dorsal spinal cord, Ptf1a, a basic helix-loop-helix (bHLH) transcription activator, maintains this delicate balance by inducing homeodomain (HD) transcription factors such as Pax2 to specify the inhibitory lineage while suppressing HD factors such as Tlx1/3 that specify the excitatory lineage. We uncover the mechanism by which Ptf1a represses excitatory cell fate in the inhibitory lineage. We identify Prdm13 as a direct target of Ptf1a and reveal that Prdm13 actively represses excitatory cell fate by binding to regulatory sequences near the Tlx1 and Tlx3 genes to silence their expression. Prdm13 acts through multiple mechanisms, including interactions with the bHLH factor Ascl1, to repress Ascl1 activation of Tlx3. Thus, Prdm13 is a key component of a highly coordinated transcriptional network that determines the balance of inhibitory versus excitatory neurons in the dorsal spinal cord.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Homeodomínio/metabolismo , Neurônios/metabolismo , Medula Espinal/metabolismo , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Western Blotting , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Imunoprecipitação da Cromatina , Primers do DNA/química , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feminino , Imunofluorescência , Proteínas de Homeodomínio/genética , Hibridização In Situ , Camundongos , Camundongos Knockout , Neurônios/citologia , Fator de Transcrição PAX2/metabolismo , RNA Interferente Pequeno/genética , Medula Espinal/citologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/fisiologia , Dedos de Zinco
14.
Dev Biol ; 328(2): 529-40, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19389376

RESUMO

Delta-like 3 (Dll3) is a Delta family member expressed broadly in the developing nervous system as neural progenitor cells initiate differentiation. A proximal promoter sequence for Dll3 is conserved across multiple species and is sufficient to direct GFP expression in a Dll3-like pattern in the neural tube of transgenic mice. This promoter contains multiple E-boxes, the consensus binding site for bHLH factors. Dll3 expression and the activity of the Dll3-promoter in the dorsal neural tube depends on the basic helix-loop-helix (bHLH) transcription factors Ascl1 (Mash1) and Neurog2 (Ngn2). Mutations in each E-box identified in the Dll3-promoter allowed distinct enhancer or repressor properties to be assigned to each site individually or in combination. In addition, each E-box has distinct characteristics relative to binding of bHLH factors Ascl1, Neurog1, and Neurog2. Surprisingly, novel Ascl1 containing DNA binding complexes are identified that interact with specific E-box sites within the Dll3-promoter in vitro. These complexes include Ascl1/Ascl1 homodimers and Ascl1/Neurog2 heterodimers, complexes that in some cases require additional undefined factors for efficient DNA binding. Thus, a complex interplay of E-box binding proteins spatially and temporally regulate Dll3 levels during neural tube development.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Tubo Neural/fisiologia , Animais , Sequência de Bases , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Dimerização , Elementos E-Box , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Camundongos , Camundongos Transgênicos , Dados de Sequência Molecular , Mutação , Proteínas do Tecido Nervoso/genética , Tubo Neural/embriologia , Neurônios/fisiologia , Regiões Promotoras Genéticas , Células-Tronco/fisiologia
15.
Exp Neurol ; 200(2): 356-70, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16678818

RESUMO

This study examined whether epidurally delivered cortical electrical stimulation (CS) improves the efficacy of motor rehabilitative training and alters neuronal density and/or cell proliferation in perilesion cortex following ischemic sensorimotor cortex (SMC) lesions. Adult rats were pre-trained on a skilled reaching task and then received partial unilateral SMC lesions and implantation of electrodes over the remaining SMC. Ten to fourteen days later, rats received daily reach training concurrent with anodal or cathodal 100 Hz CS or no stimulation (NoCS) for 18 days. To label newly generated cells, bromodeoxyuridine (BrdU; 50 mg/kg) was administered every third day of training. Both anodal and cathodal CS robustly enhanced reaching performance compared to NoCS controls. Neuronal density in the perilesion cortex was significantly increased in the cathodal CS group compared to the NoCS group. There were no significant group differences in BrdU-labeled cell density in ipsilesional cortex. Staining with Fluoro-Jade-B indicated that neurons continue to degenerate near the infarct at the time when cortical stimulation and rehabilitation were initiated. These data indicate that epidurally delivered CS greatly improves the efficacy of rehabilitative reach training following SMC damage and raise the possibility that cathodal CS may influence neuronal survival in perilesion cortex.


Assuntos
Estimulação Elétrica/métodos , Infarto/patologia , Infarto/reabilitação , Movimento/efeitos da radiação , Desempenho Psicomotor/efeitos da radiação , Córtex Somatossensorial , Análise de Variância , Animais , Comportamento Animal , Isquemia Encefálica/complicações , Isquemia Encefálica/patologia , Bromodesoxiuridina/metabolismo , Contagem de Células/métodos , Eletrodos Implantados/provisão & distribuição , Fluoresceínas , Proteína Glial Fibrilar Ácida/metabolismo , Imuno-Histoquímica/métodos , Infarto/etiologia , Masculino , Movimento/fisiologia , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Neurônios/patologia , Neurônios/fisiologia , Neurônios/efeitos da radiação , Compostos Orgânicos , Fosfopiruvato Hidratase/metabolismo , Desempenho Psicomotor/fisiologia , Ratos , Ratos Long-Evans , Córtex Somatossensorial/patologia , Córtex Somatossensorial/fisiopatologia , Córtex Somatossensorial/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA