Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 18175, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875541

RESUMO

A Ga3+-substituted spinel magnetite nanoparticles (NPs) with the formula Ga0.9Fe2.1O4 were synthesized using both the one-pot solvothermal decomposition method (TD) and the microwave-assisted heating method (MW). Stable colloidal solutions were obtained by using triethylene glycol, which served as a NPs stabilizer and as a reaction medium in both methods. A narrow size distribution of NPs, below 10 nm, was achieved through selected nucleation and growth. The composition, structure, morphology, and magnetic properties of the NPs were investigated using FTIR spectroscopy, thermal analysis (TA), X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and magnetic measurements. NPs with the expected spinel structure were obtained in the case of the TD method, while the MW method produced, additionally, an important amount of gallium suboxide. The NPs, especially those prepared by TD, have superparamagnetic behavior with 2.02 µB/f.u. at 300 K and 3.06 µB/f.u. at 4.2 K. For the MW sample these values are 0.5 µB/f.u. and 0.6 µB/f.u. at 300 K and 4.2 K, respectively. The MW prepared sample contains a secondary phase and very small NPs which affects both the dimensional distribution and the magnetic behavior of NPs. The NPs were tested in vitro on amniotic mesenchymal stem cells. It was shown that the cellular metabolism is active in the presence of Ga0.9Fe2.1O4 NPs and preserves an active biocompatible cytoskeleton.


Assuntos
Óxido de Alumínio , Nanopartículas de Magnetita , Óxido de Magnésio , Nanopartículas de Magnetita/química , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Nanomaterials (Basel) ; 13(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37110958

RESUMO

Here we report investigations of bulk and nano-sized Pr0.65Sr(0.35-x)CaxMnO3 compounds (x ≤ 0.3). Solid-state reaction was implemented for polycrystalline compounds and a modified sol-gel method was used for nanocrystalline compounds. X-ray diffraction disclosed diminishing cell volume with increasing Ca substitution in Pbnm space group for all samples. Optical microscopy was used for bulk surface morphology and transmission electron microscopy was utilized for nano-sized samples. Iodometric titration showed oxygen deficiency for bulk compounds and oxygen excess for nano-sized particles. Measurements of resistivity of bulk samples revealed features at temperatures associated with grain boundary condition and with ferromagnetic (FM)/paramagnetic (PM) transition. All samples exhibited negative magnetoresistivity. Magnetic critical behavior analysis suggested the polycrystalline samples are governed by a tricritical mean field model while nanocrystalline samples are governed by a mean field model. Curie temperatures values lower with increasing Ca substitution from 295 K for the parent compound to 201 K for x = 0.2. Bulk compounds exhibit high entropy change, with the highest value of 9.21 J/kgK for x = 0.2. Magnetocaloric effect and the possibility of tuning the Curie temperature by Ca substitution of Sr make the investigated bulk polycrystalline compounds promising for application in magnetic refrigeration. Nano-sized samples possess wider effective entropy change temperature (ΔTfwhm) and lower entropy changes of around 4 J/kgK which, however, puts in doubt their straightforward potential for applications as magnetocaloric materials.

3.
Materials (Basel) ; 15(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36556518

RESUMO

The structural, morphological, and optical properties of Ni2+ ions substitution in CoCr2O4 matrix as ceramic pigments were investigated. The thermal decomposition of the dried gel was performed aiming to understand the mass changes during annealing. The X-ray diffraction (XRD) studies reveal a spinel-type Face-Centered Cubic structure and a secondary Cr2O3 phase when x ≤ 0.75 and a Body-Centered Tetragonal structure when x = 1. Fourier Transform Infrared Spectroscopy (FT-IR) indicated two strong absorption bands corresponding to the metal-oxygen stretching from tetrahedral and octahedral sites, characteristic of spinel structure. Ultraviolet-Visible (UV-Vis) spectra exhibited the electronic transitions of the Cr2+ Cr3+ and Ni2+ ions. From the UV-Vis data, the CIE color coordinates, (x, y) of the pigments were evaluated. The morphology was examined by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) showing the agglomeration behavior of the particles. The stability, coloring properties and potential ceramic applications of studied pigments were tested by their incorporation in matte and glossy tile glazes followed by the application of obtained glazes on ceramic tiles. This study highlights the change in pigment color (from turquoise to a yellowish green) with Ni2+ ions substitution in the CoCr2O4 spinel matrix.

4.
Materials (Basel) ; 15(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36363235

RESUMO

Here, we report synthesis and investigations of bulk and nano-sized La(0.7-x)EuxBa0.3MnO3 (x ≤ 0.4) compounds. The study presents a comparison between the structural and magnetic properties of the nano- and polycrystalline manganites La(0.7-x)EuxBa0.3MnO3, which are potential magnetocaloric materials to be used in domestic magnetic refrigeration close to room temperature. The parent compound, La0.7Ba0.3MnO3, has Curie temperature TC = 340 K. The magnetocaloric effect is at its maximum around TC. To reduce this temperature below 300 K, we partially replaced the La ions with Eu ions. A solid-state reaction was used to prepare bulk polycrystalline materials, and a sol-gel method was used for the nanoparticles. X-ray diffraction was used for the structural characterization of the compounds. Transmission electron spectroscopy (TEM) evidenced nanoparticle sizes in the range of 40-80 nm. Iodometry and inductively coupled plasma optical emission spectrometry (ICP-OES) was used to investigate the oxygen content of the studied compounds. Critical exponents were calculated for all samples, with bulk samples being governed by tricritical mean field model and nanocrystalline samples governed by the 3D Heisenberg model. The bulk sample with x = 0.05 shows room temperature phase transition TC = 297 K, which decreases with increasing x for the other samples. All nano-sized compounds show lower TC values compared to the same bulk samples. The magnetocaloric effect in bulk samples revealed a greater magnetic entropy change in a relatively narrow temperature range, while nanoparticles show lower values, but in a temperature range several times larger. The relative cooling power for bulk and nano-sized samples exhibit approximately equal values for the same substitution level, and this fact can substantially contribute to applications in magnetic refrigeration near room temperature. By combining the magnetic properties of the nano- and polycrystalline manganites, better magnetocaloric materials can be obtained.

5.
Nanomaterials (Basel) ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36616099

RESUMO

Co1−xZnxFe2O4 nanoparticles (0 ≤ x ≤ 1) have been synthesized via a green sol−gel combustion method. The prepared samples were studied using X-ray diffraction measurements (XRD), transmission electron microscopy (TEM), Raman, and magnetic measurements. All samples were found to be single phases and have a cubic Fd-3m structure. EDS analysis confirmed the presence of cobalt, zinc, iron, and oxygen in all studied samples. Raman spectra clearly show that Zn ions are preferentially located in T sites for low Zn concentrations. Due to their high crystallinity, the nanoparticles show high values of the magnetization, which increases with the Zn content for x < 0.5. The magnetic properties are discussed based on Raman results. Co ferrite doped with 30% of Zn produced the largest SAR values, which increase linearly from 148 to 840 W/gMNPs as the H is increased from 20 to 60 kA/m.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...