Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pept Sci ; 30(6): e3568, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38317295

RESUMO

Cyclopeptides hold significant relevance in various fields of science and medicine, due to their unique structural properties and diverse biological activities. Cyclic peptides, characterized by intrinsically higher conformational order, exhibit remarkable stability and resistance to proteolytic degradation, making them attractive candidates for developing targeted drug delivery systems. The aim of this work is to elucidate the unique coordination properties of the multi-His cyclic peptide with c(HDHKHPHHKHHP) sequence (HDCP - heterodomain cyclopeptide). This peptide, indeed, is able to form homo- and hetero-dinuclear complexes in a wide pH range, being thus a good chelator for Cu(II) ions. Herein, we present the results of a combined study, involving potentiometric, spectroscopic (UV-Vis, CD, and EPR), and computational investigations, on its coordination properties. To better understand the interaction pattern with Cu(II) metal ions, two other peptides, each one bearing only one of the two binding domains of HDCP are also considered in this study: c(HDHKHPGGKGGP) = CP1, c(GKGGKPHHKHHP) = CP2, which share sequence fragments of HDCP and allow separate investigations of its coordination domains.


Assuntos
Cobre , Peptídeos Cíclicos , Cobre/química , Peptídeos Cíclicos/química , Histidina/química , Ligação Proteica , Complexos de Coordenação/química , Concentração de Íons de Hidrogênio , Sequência de Aminoácidos
2.
Int J Mol Sci ; 25(3)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38339189

RESUMO

Nqo15 is a subunit of respiratory complex I of the bacterium Thermus thermophilus, with strong structural similarity to human frataxin (FXN), a protein involved in the mitochondrial disease Friedreich's ataxia (FRDA). Recently, we showed that the expression of recombinant Nqo15 can ameliorate the respiratory phenotype of FRDA patients' cells, and this prompted us to further characterize both the Nqo15 solution's behavior and its potential functional overlap with FXN, using a combination of in silico and in vitro techniques. We studied the analogy of Nqo15 and FXN by performing extensive database searches based on sequence and structure. Nqo15's folding and flexibility were investigated by combining nuclear magnetic resonance (NMR), circular dichroism, and coarse-grained molecular dynamics simulations. Nqo15's iron-binding properties were studied using NMR, fluorescence, and specific assays and its desulfurase activation by biochemical assays. We found that the recombinant Nqo15 isolated from complex I is monomeric, stable, folded in solution, and highly dynamic. Nqo15 does not share the iron-binding properties of FXN or its desulfurase activation function.


Assuntos
Frataxina , Ataxia de Friedreich , Humanos , Complexo I de Transporte de Elétrons/metabolismo , Thermus thermophilus/metabolismo , Simulação de Dinâmica Molecular , Ferro/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Ataxia de Friedreich/metabolismo
4.
Photosynth Res ; 159(2-3): 133-152, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37191762

RESUMO

Photo-induced triplet states in the thylakoid membranes isolated from the cyanobacterium Acaryocholoris marina, that harbours Chlorophyll (Chl) d as its main chromophore, have been investigated by Optically Detected Magnetic Resonance (ODMR) and time-resolved Electron Paramagnetic Resonance (TR-EPR). Thylakoids were subjected to treatments aimed at poising the redox state of the terminal electron transfer acceptors and donors of Photosystem II (PSII) and Photosystem I (PSI), respectively. Under ambient redox conditions, four Chl d triplet populations were detectable, identifiable by their characteristic zero field splitting parameters, after deconvolution of the Fluorescence Detected Magnetic Resonance (FDMR) spectra. Illumination in the presence of the redox mediator N,N,N',N'-Tetramethyl-p-phenylenediamine (TMPD) and sodium ascorbate at room temperature led to a redistribution of the triplet populations, with T3 (|D|= 0.0245 cm-1, |E|= 0.0042 cm-1) becoming dominant and increasing in intensity with respect to untreated samples. A second triplet population (T4, |D|= 0.0248 cm-1, |E|= 0.0040 cm-1) having an intensity ratio of about 1:4 with respect to T3 was also detectable after illumination in the presence of TMPD and ascorbate. The microwave-induced Triplet-minus-Singlet spectrum acquired at the maximum of the |D|-|E| transition (610 MHz) displays a broad minimum at 740 nm, accompanied by a set of complex spectral features that overall resemble, despite showing further fine spectral structure, the previously reported Triplet-minus-Singlet spectrum attributed to the recombination triplet of PSI reaction centre, 3 P 740 [Schenderlein M, Çetin M, Barber J, et al. Spectroscopic studies of the chlorophyll d containing photosystem I from the cyanobacterium Acaryochloris marina. Biochim Biophys Acta 1777:1400-1408]. However, TR-EPR experiments indicate that this triplet displays an eaeaea electron spin polarisation pattern which is characteristic of triplet sublevels populated by intersystem crossing rather than recombination, for which an aeeaae polarisation pattern is expected instead. It is proposed that the observed triplet, which leads to the bleaching of the P740 singlet state, sits on the PSI reaction centre.


Assuntos
Cianobactérias , Complexo de Proteína do Fotossistema I , Tilacoides , Tilacoides/química , Complexo de Proteína do Fotossistema I/química , Clorofila/química , Complexo de Proteína do Fotossistema II/química , Espectroscopia de Ressonância de Spin Eletrônica
5.
Cell Death Dis ; 14(12): 805, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-38062036

RESUMO

Friedreich ataxia (FRDA) is a rare, inherited neurodegenerative disease caused by an expanded GAA repeat in the first intron of the FXN gene, leading to transcriptional silencing and reduced expression of frataxin. Frataxin participates in the mitochondrial assembly of FeS clusters, redox cofactors of the respiratory complexes I, II and III. To date it is still unclear how frataxin deficiency culminates in the decrease of bioenergetics efficiency in FRDA patients' cells. We previously demonstrated that in healthy cells frataxin is closely attached to the mitochondrial cristae, which contain both the FeS cluster assembly machinery and the respiratory chain complexes, whereas in FRDA patients' cells with impaired respiration the residual frataxin is largely displaced in the matrix. To gain novel insights into the function of frataxin in the mitochondrial pathophysiology, and in the upstream metabolic defects leading to FRDA disease onset and progression, here we explored the potential interaction of frataxin with the FeS cluster-containing respiratory complexes I, II and III. Using healthy cells and different FRDA cellular models we found that frataxin interacts with these three respiratory complexes. Furthermore, by EPR spectroscopy, we observed that in mitochondria from FRDA patients' cells the decreased level of frataxin specifically affects the FeS cluster content of complex I. Remarkably, we also found that the frataxin-like protein Nqo15 from T. thermophilus complex I ameliorates the mitochondrial respiratory phenotype when expressed in FRDA patient's cells. Our data point to a structural and functional interaction of frataxin with complex I and open a perspective to explore therapeutic rationales for FRDA targeted to this respiratory complex.


Assuntos
Ataxia de Friedreich , Doenças Neurodegenerativas , Humanos , Transporte de Elétrons , Ataxia de Friedreich/genética , Ataxia de Friedreich/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Membranas Mitocondriais/metabolismo , Doenças Neurodegenerativas/metabolismo
6.
Molecules ; 27(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35744779

RESUMO

A magnetophotoselection (MPS) investigation of the photoexcited triplet state of chlorophyll a both in a frozen organic solvent and in a protein environment, provided by the water-soluble chlorophyll protein (WSCP) of Lepidium virginicum, is reported. The MPS experiment combines the photoselection achieved by exciting with linearly polarized light with the magnetic selection of electron paramagnetic resonance (EPR) spectroscopy, allowing the determination of the relative orientation of the optical transition dipole moment and the zero-field splitting tensor axes in both environments. We demonstrate the robustness of the proposed methodology for a quantitative description of the excitonic interactions among pigments. The orientation of the optical transition dipole moments determined by the EPR analysis in WSCP, identified as an appropriate model system, are in excellent agreement with those calculated in the point-dipole approximation. In addition, MPS provides information on the electronic properties of the triplet state, localized on a single chlorophyll a pigment of the protein cluster, in terms of orientation of the zero-field splitting tensor axes in the molecular frame.


Assuntos
Clorofila , Lepidium , Clorofila/química , Clorofila A/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Lepidium/metabolismo , Complexos de Proteínas Captadores de Luz/química , Água/química
7.
Angew Chem Int Ed Engl ; 61(32): e202204787, 2022 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-35670285

RESUMO

Water-soluble melanin-protein-Fe/Cu conjugates derived from norepinephrine and fibrillar ß-lactoglobulin are reliable models for neuromelanin (NM) of human brain locus coeruleus. Both iron and copper promote catecholamine oxidation and exhibit strong tendency to remain coupled in oligonuclear aggregates. The Fe-Cu clusters are EPR silent and affect the 1 H NMR spectra of the conjugates through a specific sequence of signals. Derivatives containing only Fe or Cu exhibit different NMR patterns. The EPR spectra show weak signals of paramagnetic FeIII in conjugates containing Fe or mixed Fe-Cu sites due to small amounts of mononuclear centers. The latter derivatives exhibit EPR signals for isolated CuII centers. These features parallel the EPR behavior of NM from locus coeruleus. The spectral data indicate that FeIII is bound to the melanic fraction, whereas CuII is bound on the protein fibrils, suggesting that the Fe-Cu clusters occur at the interface between the two components of the synthetic NMs.


Assuntos
Melaninas , Água , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/química , Humanos , Locus Cerúleo/metabolismo , Melaninas/química , Norepinefrina
8.
Int J Mol Sci ; 23(9)2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35563202

RESUMO

Carotenoids represent the first line of defence of photosystems against singlet oxygen (1O2) toxicity, because of their capacity to quench the chlorophyll triplet state (3Chl) through a physical mechanism based on the transfer of triplet excitation (triplet-triplet energy transfer, TTET). In previous works, we showed that the antenna LHCII is characterised by a robust photoprotective mechanism, able to adapt to the removal of individual chlorophylls while maintaining a remarkable capacity for 3Chl quenching. In this work, we investigated the effects on this quenching induced in LHCII by the replacement of the lutein bound at the L1 site with violaxanthin and zeaxanthin. We studied LHCII isolated from the Arabidopsis thaliana mutants lut2-in which lutein is replaced by violaxanthin-and lut2 npq2, in which all xanthophylls are replaced constitutively by zeaxanthin. We characterised the photophysics of these systems via optically detected magnetic resonance (ODMR) and time-resolved electron paramagnetic resonance (TR-EPR). We concluded that, in LHCII, lutein-binding sites have conserved characteristics, and ensure efficient TTET regardless of the identity of the carotenoid accommodated.


Assuntos
Arabidopsis , Luteína , Arabidopsis/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Transferência de Energia , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Xantofilas/química , Zeaxantinas/metabolismo
9.
Biomedicines ; 9(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34944579

RESUMO

Frataxin (FXN) is a highly conserved mitochondrial protein whose deficiency causes Friedreich's ataxia, a neurodegenerative disease. The precise physiological function of FXN is still unclear; however, there is experimental evidence that the protein is involved in biosynthetic iron-sulfur cluster machinery, redox imbalance, and iron homeostasis. FXN is synthesized in the cytosol and imported into the mitochondria, where it is proteolytically cleaved to the mature form. Its involvement in the redox imbalance suggests that FXN could interact with mitochondrial superoxide dismutase (SOD2), a key enzyme in antioxidant cellular defense. In this work, we use site-directed spin labelling coupled to electron paramagnetic resonance spectroscopy (SDSL-EPR) and fluorescence quenching experiments to investigate the interaction between human FXN and SOD2 in vitro. Spectroscopic data are combined with rigid body protein-protein docking to assess the potential structure of the FXN-SOD2 complex, which leaves the metal binding region of FXN accessible to the solvent. We provide evidence that human FXN interacts with human SOD2 in vitro and that the complex is in fast exchange. This interaction could be relevant during the assembly of iron-sulfur (FeS) clusters and/or their incorporation in proteins when FeS clusters are potentially susceptible to attacks by reactive oxygen species.

10.
Inorg Chem ; 60(20): 15141-15150, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34612628

RESUMO

A series of Gd3+ complexes (Gd1-Gd3) with the general formula GdL3(EtOH)2, where L is a ß-diketone ligand with polycyclic aromatic hydrocarbon substituents of increasing size (1-3), was studied by combining time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy and DFT calculations to rationalize the anomalous spectroscopic behavior of the bulkiest complex (Gd3) through the series. Its faint phosphorescence band is observed only at 80 K and it is strongly red-shifted (∼200 nm) from the intense fluorescence band. Moreover, the TR-EPR spectral analysis found that triplet levels of 3/Gd3 are effectively populated and have smaller |D| values than those of the other compounds. The combined use of zero-field splitting and spin density delocalization calculations, together with spin population analysis, allows us to explain both the large red shift and the low intensity of the phosphorescence band observed for Gd3. The large red shift is determined by the higher delocalization degree of the wavefunction, which implies a larger energy gap between the excited S1 and T1 states. The low intensity of the phosphorescence is due to the presence of C-H groups which favor non-radiative decay. These groups are present in all complexes; nevertheless, they have a relevant spin density only in Gd3. The spin population analysis on NaL models, in which Na+ is coordinated to a deprotonated ligand, mimicking the coordinative environment of the complex, confirms the outcomes on the free ligands.

11.
Biochim Biophys Acta Bioenerg ; 1862(11): 148481, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34363791

RESUMO

The triplet states populated under illumination in the monomeric light-harvesting complex II (LHCII) were analyzed by EPR and Optically Detected Magnetic Resonance (ODMR) in order to fully characterize the perturbations introduced by site-directed mutations leading to the removal of key chlorophylls. We considered the A2 and A5 mutants, lacking Chls a612(a611) and Chl a603 respectively, since these Chls have been proposed as the sites of formation of triplet states which are subsequently quenched by the luteins. Chls a612 and Chl a603 belong to the two clusters determining the low energy exciton states in the complex. Their removal is expected to significantly alter the excitation energy transfer pathways. On the basis of the TR- and pulse EPR triplet spectra, the two symmetrically related pairs constituted by Chl a612/Lut620 and Chl a603/Lut621 were both possible candidate for triplet-triplet energy transfer (TTET). However, the ODMR results clearly show that only Lut620 is involved in triplet quenching. In the A5 mutant, the Chl a612/Lut620 pair retains this pivotal photoprotective role, while the A2 mutant was found to activate an alternative pathway involving the Chl a603/Lut621pair. These results shows that LHCII is characterized by a robust photoprotective mechanism, able to adapt to the removal of individual chromophores while maintaining a remarkable degree of Chl triplet quenching. Small amounts of unquenched Chl triplet states were also detected. The analysis of the results allowed us to assign the sites of "unquenched" chlorophyll triplets to Chl a610 and Chl a602.


Assuntos
Carotenoides/química , Clorofila/química , Complexos de Proteínas Captadores de Luz/química , Sequência de Aminoácidos , Espectroscopia de Ressonância de Spin Eletrônica , Transferência Ressonante de Energia de Fluorescência , Espectroscopia de Ressonância Magnética , Processos Fotoquímicos , Fotossíntese , Conformação Proteica , Relação Estrutura-Atividade
12.
Photochem Photobiol Sci ; 20(6): 747-759, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34018156

RESUMO

The type-I, homodimeric photosynthetic reaction center (RC) of Heliobacteria (HbRC) is the only known RC in which bacteriochlorophyll g (BChl g) is found. It is also simpler than other RCs, having the smallest number of protein subunits and bound chromophores of any type-I RC. In the presence of oxygen, BChl g isomerizes to 81-hydroxychlorophyll aF (Chl aF). This naturally occurring process provides a way of altering the chlorophylls and studying the effect of these changes on energy and electron transfer. Transient absorbance difference spectroscopy reveals that triplet-state formation occurs in the antenna chlorophylls of HbRCs but does not provide site-specific information. Here, we report on an extended optically detected magnetic resonance (ODMR) study of the antenna triplet states in HbRCs with differing levels of conversion of BChl g to Chl aF. The data reveal pools of BChl g molecules with different triplet zero-field splitting parameters and different susceptibilities to chemical oxidation. By relating the detailed spectroscopic characteristics derived from the ODMR data to the recently solved crystallographic structure, we have tentatively identified BChl g molecules in which the probability of triplet formation is high and sites at which BChl g conversion is more likely, providing useful information about the fate of the excitation in the complex.


Assuntos
Bacterioclorofilas/química , Clostridiales/química , Oxigênio/análise , Bacterioclorofilas/metabolismo , Clostridiales/metabolismo , Espectroscopia de Ressonância Magnética , Oxigênio/metabolismo
13.
FEBS J ; 288(6): 1956-1974, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32898935

RESUMO

Coenzyme Q10 (CoQ, ubiquinone) is a redox-active lipid endogenously synthesized by the cells. The final stage of CoQ biosynthesis is performed at the mitochondrial level by the 'complex Q', where coq2 is responsible for the prenylation of the benzoquinone ring of the molecule. We report that the competitive coq2 inhibitor 4-nitrobenzoate (4-NB) decreased the cellular CoQ content and caused severe impairment of mitochondrial function in the T67 human glioma cell line. In parallel with the reduction in CoQ biosynthesis, the cholesterol level increased, leading to significant perturbation of the plasma membrane physicochemical properties. We show that 4-NB treatment did not significantly affect the cell viability, because of an adaptive metabolic rewiring toward glycolysis. Hypoxia-inducible factor 1α (HIF-1α) stabilization was detected in 4-NB-treated cells, possibly due to the contribution of both reduction in intracellular oxygen tension and ROS overproduction. Exogenous CoQ supplementation partially recovered cholesterol content, HIF-1α degradation, and ROS production, whereas only weakly improved the bioenergetic impairment induced by the CoQ depletion. Our data provide new insights on the effect of CoQ depletion and contribute to shed light on the pathogenic mechanisms of ubiquinone deficiency syndrome.


Assuntos
Metabolismo Energético , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Ubiquinona/análogos & derivados , Alquil e Aril Transferases/antagonistas & inibidores , Alquil e Aril Transferases/metabolismo , Ataxia/metabolismo , Linhagem Celular Tumoral , Colesterol/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Debilidade Muscular/metabolismo , Nitrobenzoatos/farmacologia , Estabilidade Proteica/efeitos dos fármacos , Ubiquinona/antagonistas & inibidores , Ubiquinona/biossíntese , Ubiquinona/deficiência , Ubiquinona/metabolismo
14.
Int J Mol Sci ; 21(24)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348670

RESUMO

Frataxin is a highly conserved protein whose deficiency results in the neurodegenerative disease Friederich's ataxia. Frataxin's actual physiological function has been debated for a long time without reaching a general agreement; however, it is commonly accepted that the protein is involved in the biosynthetic iron-sulphur cluster (ISC) machinery, and several authors have pointed out that it also participates in iron homeostasis. In this work, we use site-directed spin labeling coupled to electron paramagnetic resonance (SDSL EPR) to add new information on the effects of ferric and ferrous iron binding on the properties of human frataxin in vitro. Using SDSL EPR and relating the results to fluorescence experiments commonly performed to study iron binding to FXN, we produced evidence that ferric iron causes reversible aggregation without preferred interfaces in a concentration-dependent fashion, starting at relatively low concentrations (micromolar range), whereas ferrous iron binds without inducing aggregation. Moreover, our experiments show that the ferrous binding does not lead to changes of protein conformation. The data reported in this study reveal that the currently reported binding stoichiometries should be taken with caution. The use of a spin label resistant to reduction, as well as the comparison of the binding effect of Fe2+ in wild type and in the pathological D122Y variant of frataxin, allowed us to characterize the Fe2+ binding properties of different protein sites and highlight the effect of the D122Y substitution on the surrounding residues. We suggest that both Fe2+ and Fe3+ might play a relevant role in the context of the proposed FXN physiological functions.


Assuntos
Dicroísmo Circular/métodos , Compostos Férricos/química , Compostos Ferrosos/química , Proteínas de Ligação ao Ferro/química , Ferro/química , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Humanos , Concentração de Íons de Hidrogênio , Agregação Patológica de Proteínas , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência/métodos , Frataxina
15.
Langmuir ; 36(35): 10429-10437, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32787070

RESUMO

In this report, we present a method to characterize the kinetics of electron transfer across the bilayer of a unilamellar liposome composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine. The method utilizes synthetic phospholipids containing noninvasive nitroxide spin labels having the >N-O• moiety at well-defined distances from the outer surface of the liposome to serve as reporters for their local environment and, at the same time, permit measurement of the kinetics of electron transfer. We used 5-doxyl and 16-doxyl stearic acids. The paramagnetic >N-O• moiety is photo-oxidized to the corresponding diamagnetic oxoammonium cation by a ruthenium electron acceptor formed in the solution. Electron transfer is monitored by three independent spectroscopic methods: by both steady-state and time-resolved electron paramagnetic resonance and by optical spectroscopy. These techniques allowed us to differentiate between the electron transfer rates of nitroxides located in the outer leaflet of the phospholipid bilayer and of those located in the inner leaflet. Measurement of electron transfer rates as a function of temperature revealed a low-activation barrier (ΔG‡ ∼ 40 kJ/mol) that supports a tunneling mechanism.

16.
Phys Chem Chem Phys ; 21(41): 23217, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31602454

RESUMO

Correction for 'An EPR study of ampullosporin A, a medium-length peptaibiotic, in bicelles and vesicles' by Marco Bortolus et al., Phys. Chem. Chem. Phys., 2016, 18, 749-760.

17.
Biochim Biophys Acta Proteins Proteom ; 1867(11): 140254, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31344531

RESUMO

The neurodegenerative disease Friedreich ataxia results from a deficiency of frataxin, a mitochondrial protein. Most patients have a GAA expansion in the first intron of both alleles of frataxin gene, whereas a minority of them are heterozygous for the expansion and contain a mutation in the other allele. Frataxin has been claimed to participate in iron homeostasis and biosynthesis of FeS clusters, however its role in both pathways is not unequivocally defined. In this work we combined different advanced spectroscopic analyses to explore the iron-binding properties of human frataxin, as isolated and at the FeS clusters assembly machinery. For the first time we used EPR spectroscopy to address this key issue providing clear evidence of the formation of a complex with a low symmetry coordination of the metal ion. By 2D NMR, we confirmed that iron can be bound in both oxidation states, a controversial issue, and, in addition, we were able to point out a transient interaction of frataxin with a N-terminal 6his-tagged variant of ISCU, the scaffold protein of the FeS clusters assembly machinery. To obtain insights on structure/function relationships relevant to understand the disease molecular mechanism(s), we extended our studies to four clinical frataxin mutants. All variants showed a moderate to strong impairment in their ability to activate the FeS cluster assembly machinery in vitro, while keeping the same iron-binding features of the wild type protein. This supports the multifunctional nature of frataxin and the complex biochemical consequences of its mutations.


Assuntos
Ataxia de Friedreich , Proteínas de Ligação ao Ferro/química , Ferro/química , Mutação , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Ferro/metabolismo , Proteínas de Ligação ao Ferro/genética , Proteínas de Ligação ao Ferro/metabolismo , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios Proteicos , Frataxina
18.
Photochem Photobiol Sci ; 18(9): 2199-2207, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30838367

RESUMO

An anthraquinone modified with a nitroxide radical and able to intercalate into DNA has been synthesized to obtain a molecule the spin state of which can be manipulated by visible light and DNA binding. The doublet ground state of the molecule can be photo-switched to either a strongly coupled spin state (quartet + doublet), when isolated, or to an uncoupled spin state (triplet and doublet), when bound to DNA. The different spin state that is obtained upon photoexcitation depends on the intercalation of the quinonic core into double-stranded DNA which changes the conformation of the molecule, thereby altering the exchange interaction between the excited state localized on the quinonic core and the nitroxide radical. The spin state of the system has been investigated using both continuous-wave and time-resolved EPR spectroscopy.


Assuntos
Antraquinonas/química , DNA/química , Teoria da Densidade Funcional , Sítios de Ligação , Espectroscopia de Ressonância de Spin Eletrônica , Estrutura Molecular , Processos Fotoquímicos
19.
Int J Mol Sci ; 19(10)2018 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-30314343

RESUMO

Hydrogen production in nature is performed by hydrogenases. Among them, [FeFe]-hydrogenases have a peculiar active site, named H-cluster, that is made of two parts, synthesized in different pathways. The cubane sub-cluster requires the normal iron-sulfur cluster maturation machinery. The [2Fe] sub-cluster instead requires a dedicated set of maturase proteins, HydE, HydF, and HydG that work to assemble the cluster and deliver it to the apo-hydrogenase. In particular, the delivery is performed by HydF. In this review, we will perform an overview of the latest knowledge on the maturation machinery of the H-cluster, focusing in particular on HydF.


Assuntos
Hidrogênio/química , Hidrogênio/metabolismo , Hidrogenase/química , Hidrogenase/metabolismo , Ferro/química , Ferro/metabolismo , Catálise , Hidrogenase/classificação , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
20.
Biochim Biophys Acta Bioenerg ; 1859(8): 612-618, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29782823

RESUMO

The peridinin-chlorophyll-a protein (PCP) is a water-soluble light harvesting protein of the dinoflagellate Amphidinium carterae, employing peridinin (Per) as the main carotenoid to fulfil light harvesting and photo-protective functions. Per molecules bound to the protein experience specific molecular surroundings which lead to different electronic and spectral properties. In the refolded N89 L variant PCP (N89 L-RFPCP) a significant part of the intensity on the long wavelength side of the absorption spectrum is shifted to shorter wavelengths due to a significant change in the Per-614 site energy. Since Per-614 has been shown to be the main chlorophyll (Chl) triplet quencher in the protein, and the relative geometry of pigments is not affected by the mutation as verified by X-ray crystallography, this variant is ideally suited to study the dependence of the triplet-triplet energy transfer (TTET) mechanism on the pigment site energy. By using a combination of Optically Detected Magnetic Resonance (ODMR), pulse Electron Paramagnetic Resonance (EPR) and Electron Nuclear DOuble Resonance (ENDOR) we found that PCP maintains the efficient Per-614-to-Chl-a TTET despite the change of Per-614 local energy. This shows the robustness of the photoprotective site, which is very important for the protection of the system.


Assuntos
Carotenoides/química , Clorofila/química , Transferência de Energia , Fotossíntese , Proteínas de Protozoários/química , Spiroplasma/química , Dinoflagellida/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...