Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 629(8012): 652-659, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693261

RESUMO

The gut microbiota operates at the interface of host-environment interactions to influence human homoeostasis and metabolic networks1-4. Environmental factors that unbalance gut microbial ecosystems can therefore shape physiological and disease-associated responses across somatic tissues5-9. However, the systemic impact of the gut microbiome on the germline-and consequently on the F1 offspring it gives rise to-is unexplored10. Here we show that the gut microbiota act as a key interface between paternal preconception environment and intergenerational health in mice. Perturbations to the gut microbiota of prospective fathers increase the probability of their offspring presenting with low birth weight, severe growth restriction and premature mortality. Transmission of disease risk occurs via the germline and is provoked by pervasive gut microbiome perturbations, including non-absorbable antibiotics or osmotic laxatives, but is rescued by restoring the paternal microbiota before conception. This effect is linked with a dynamic response to induced dysbiosis in the male reproductive system, including impaired leptin signalling, altered testicular metabolite profiles and remapped small RNA payloads in sperm. As a result, dysbiotic fathers trigger an elevated risk of in utero placental insufficiency, revealing a placental origin of mammalian intergenerational effects. Our study defines a regulatory 'gut-germline axis' in males, which is sensitive to environmental exposures and programmes offspring fitness through impacting placenta function.


Assuntos
Suscetibilidade a Doenças , Disbiose , Pai , Microbioma Gastrointestinal , Insuficiência Placentária , Lesões Pré-Natais , Espermatozoides , Animais , Feminino , Masculino , Camundongos , Gravidez , Disbiose/complicações , Disbiose/microbiologia , Microbioma Gastrointestinal/fisiologia , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Placenta/metabolismo , Placenta/fisiopatologia , Insuficiência Placentária/etiologia , Insuficiência Placentária/metabolismo , Insuficiência Placentária/fisiopatologia , Resultado da Gravidez , Lesões Pré-Natais/etiologia , Lesões Pré-Natais/metabolismo , Lesões Pré-Natais/fisiopatologia , Transdução de Sinais , Espermatozoides/metabolismo , Testículo/metabolismo , Testículo/fisiopatologia , Suscetibilidade a Doenças/etiologia
2.
J Am Soc Nephrol ; 26(12): 3045-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25855779

RESUMO

Nitric oxide (NO) production is diminished in many patients with cardiovascular and renal disease. Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor of NO synthesis, and elevated plasma levels of ADMA are associated with poor outcomes. Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is a methylarginine-metabolizing enzyme that reduces ADMA levels. We reported previously that a DDAH1 gene variant associated with increased renal DDAH1 mRNA transcription and lower plasma ADMA levels, but counterintuitively, a steeper rate of renal function decline. Here, we test the hypothesis that reduced renal-specific ADMA metabolism protects against progressive renal damage. Renal DDAH1 is expressed predominately within the proximal tubule. A novel proximal tubule-specific Ddah1 knockout (Ddah1(PT-/-)) mouse demonstrated tubular cell accumulation of ADMA and lower NO concentrations, but unaltered plasma ADMA concentrations. Ddah1(PT-/-) mice were protected from reduced kidney tissue mass, collagen deposition, and profibrotic cytokine expression in two independent renal injury models: folate nephropathy and unilateral ureteric obstruction. Furthermore, a study of two independent kidney transplant cohorts revealed higher levels of human renal allograft methylarginine-metabolizing enzyme gene expression associated with steeper function decline. We also report an association among DDAH1 expression, NO activity, and uromodulin expression supported by data from both animal and human studies, raising the possibility that kidney DDAH1 expression exacerbates renal injury through uromodulin-related mechanisms. Together, these data demonstrate that reduced renal tubular ADMA metabolism protects against progressive kidney function decline. Thus, circulating ADMA may be an imprecise marker of renal methylarginine metabolism, and therapeutic ADMA reduction may even be deleterious to kidney function.


Assuntos
Injúria Renal Aguda/metabolismo , Amidoidrolases/metabolismo , Arginina/análogos & derivados , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Adulto , Aloenxertos/metabolismo , Amidoidrolases/genética , Animais , Arginina/metabolismo , Colágeno Tipo I/urina , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Ácido Fólico/efeitos adversos , Expressão Gênica , Taxa de Filtração Glomerular , Humanos , Transplante de Rim , Túbulos Renais Proximais/enzimologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Óxido Nítrico/metabolismo , RNA Mensageiro/metabolismo , Transaminases/genética , Transaminases/metabolismo , Obstrução Ureteral/complicações , Uromodulina/urina
3.
Arterioscler Thromb Vasc Biol ; 35(6): 1382-92, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25857313

RESUMO

OBJECTIVE: Nitric oxide is a key to numerous physiological and pathophysiological processes. Nitric oxide production is regulated endogenously by 2 methylarginines, asymmetric dimethylarginine (ADMA) and monomethyl-L-arginine. The enzyme that specifically metabolizes asymmetric dimethylarginine and monomethyl-L-arginine is dimethylarginine dimethylaminohydrolase (DDAH). The first isoform dimethylarginine dimethylaminohydrolase 1 has previously been shown to be an important regulator of methylarginines in both health and disease. This study explores for the first time the role of endogenous dimethylarginine dimethylaminohydrolase 2 in regulating cardiovascular physiology and also determines the functional impact of dimethylarginine dimethylaminohydrolase 2 deletion on outcome and immune function in sepsis. APPROACH AND RESULTS: Mice, globally deficient in Ddah2, were compared with their wild-type littermates to determine the physiological role of Ddah2 using in vivo and ex vivo assessments of vascular function. We show that global knockout of Ddah2 results in elevated blood pressure during periods of activity (mean [SEM], 118.5 [1.3] versus 112.7 [1.1] mm Hg; P=0.025) and changes in vascular responsiveness mediated by changes in methylarginine concentration, mean myocardial tissue asymmetric dimethylarginine (SEM) was 0.89 (0.06) versus 0.67 (0.05) µmol/L (P=0.02) and systemic nitric oxide concentrations. In a model of severe polymicrobial sepsis, Ddah2 knockout affects outcome (120-hour survival was 12% in Ddah2 knockouts versus 53% in wild-type animals; P<0.001). Monocyte-specific deletion of Ddah2 results in a similar pattern of increased severity to that seen in globally deficient animals. CONCLUSIONS: Ddah2 has a regulatory role both in normal physiology and in determining outcome of severe polymicrobial sepsis. Elucidation of this role identifies a mechanism for the observed relationship between Ddah2 polymorphisms, cardiovascular disease, and outcome in sepsis.


Assuntos
Amidoidrolases/metabolismo , Hemodinâmica , Óxido Nítrico/biossíntese , Sepse/fisiopatologia , Animais , Carga Bacteriana , Pressão Sanguínea , Modelos Animais de Doenças , Macrófagos Peritoneais/metabolismo , Camundongos Knockout , Prognóstico , Sepse/metabolismo , Sepse/microbiologia , Análise de Sequência de RNA , Telemetria
4.
Circulation ; 131(25): 2217-25, 2015 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910799

RESUMO

BACKGROUND: Asymmetrical dimethylarginine (ADMA) is an endogenous inhibitor of nitric oxide synthesis and a risk factor for cardiovascular disease. Dimethylarginine dimethylaminohydrolase (DDAH) enzymes are responsible for ADMA breakdown. It has been reported that endothelial DDAH1 accounts for the majority of ADMA metabolism. However, we and others have shown strong DDAH1 expression in a range of nonendothelial cell types, suggesting that the endothelium is not the only site of metabolism. We have developed a new endothelium-specific DDAH1 knockout mouse (DDAH1(En-/-)) to investigate the significance of endothelial ADMA in cardiovascular homeostasis. METHODS AND RESULTS: DDAH1 deletion in the DDAH1(En-/-) mouse was mediated by Tie-2 driven Cre expression. DDAH1 deletion was confirmed through immunocytochemistry, whereas Western blotting showed that DDAH1 remained in the kidney and liver, confirming expression in nonendothelial cells. Plasma ADMA was unchanged in DDAH1(En-/-) mice, and cultured aortas released amounts of ADMA to similar to controls. Consistent with these observations, vasoreactivity ex vivo and hemodynamics in vivo were unaltered in DDAH1(En-/-) mice. In contrast, we observed significantly impaired angiogenic responses both ex vivo and in vivo. CONCLUSIONS: We demonstrate that endothelial DDAH1 is not a critical determinant of plasma ADMA, vascular reactivity, or hemodynamic homeostasis. DDAH1 is widely expressed in a range of vascular and nonvascular cell types; therefore, the additive effect of DDAH1 expression in multiple organ systems determines plasma ADMA concentrations. Endothelial deletion of DDAH1 profoundly impairs the angiogenic capacity of endothelial cells, indicating that intracellular ADMA is a critical determinant of endothelial cell response.


Assuntos
Amidoidrolases/fisiologia , Células Endoteliais/enzimologia , Endotélio Vascular/enzimologia , Hemodinâmica/fisiologia , Homeostase/fisiologia , Neovascularização Fisiológica/fisiologia , Amidoidrolases/deficiência , Animais , Células Cultivadas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
5.
Arthritis Rheum ; 64(7): 2278-88, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22307759

RESUMO

OBJECTIVE: Mechanical joint loading is critical for the development of osteoarthritis (OA). Although once regarded as a disease of cartilage attrition, OA is now known to be controlled by the expression and activity of key proteases, such as ADAMTS-5, that drive matrix degradation. This study was undertaken to investigate the link between protease expression and mechanical joint loading in vivo. METHODS: We performed a microarray analysis of genes expressed in the whole joint following surgical induction of murine OA (by cutting the medial meniscotibial ligament). Gene expression changes were validated by reverse transcriptase-polymerase chain reaction in whole joints and microdissected tissues of the joint, including the articular cartilage, meniscus, and epiphysis. Following surgery, mouse joints were immobilized, either by prolonged anesthesia or by sciatic neurectomy. RESULTS: Many genes were regulated in the whole joint within 6 hours of surgical induction of OA in the mouse. These included Arg1, Ccl2, Il6, Tsg6, Mmp3, Il1b, Adamts5, Adamts4, and Adamts1. All of these were significantly regulated in the articular cartilage. When joints were immobilized by prolonged anesthesia, regulation of the vast majority of genes was abrogated. When joints were immobilized by sciatic neurectomy, regulation of selected genes was abrogated, and OA was prevented up to 12 weeks postsurgery. CONCLUSION: These findings indicate that gene expression in the mouse joint following the induction of OA is rapid and highly mechanosensitive. Regulated genes include the known pathogenic protease ADAMTS-5. Targeting the mechanosensing mechanisms of joint tissue may offer new strategies for disease modification.


Assuntos
Artrite Experimental/prevenção & controle , Cartilagem Articular/metabolismo , Regulação da Expressão Gênica , Articulações/metabolismo , Osteoartrite/prevenção & controle , Animais , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Experimental/patologia , Cartilagem Articular/patologia , Imobilização , Articulações/patologia , Masculino , Camundongos , Osteoartrite/genética , Osteoartrite/metabolismo , Osteoartrite/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...