Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 90(8): 085108, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31472649

RESUMO

In many scientific communities, the definition of standardized experiments has enabled major progress in process understanding. The investigation of the spray-flame synthesis of nanoparticles at a well-defined standard burner by experiment and simulation makes it possible to produce a comprehensive data set with various established and novel measuring methods. In this work, we introduce the design of the SpraySyn burner as a new standard for a free-jet type burner that offers well-defined and simulation-friendly boundary conditions and geometries as well as accessibility for optical diagnostics. A combustible precursor solution is fed through a centrally located capillary and aerosolized with an oxygen dispersion gas flow. The spray flame is stabilized by a premixed flat methane/oxygen pilot flame fed via a porous bronze matrix surrounded by a stabilizing nitrogen coflow emanating through the same porous matrix, providing easy-to-calculate boundary conditions for simulations. This burner design enables the use of a wide choice of solvents, precursors, and precursor combinations. Best-practice operating instructions and parameters are given, and large-eddy simulations are performed demonstrating the suitability of the SpraySyn burner for computational fluid dynamics simulations. For ensuring reproducible operation across labs, we define a consumer-camera-based flame characterization scheme for the quantitative assessment of the flame geometry such as flame length, diameter, tilt angle, and photometric distribution of visible chemiluminescence along the center axis. These parameters can be used for benchmarking the pilot and spray flame by each user of the SpraySyn burner with the reference flames.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...