Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(39): e2301264, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37337428

RESUMO

Polymer-electrolyte-membrane fuel cells (PEMFCs) hold great promise for applications in clean energy conversion, but cost and durability continue to limit commercialization. This work presents a new class of catalyst/electrode architecture that does not rely on Pt particles or carbon supports, eliminating the primary degradation mechanisms in conventional electrodes, and thereby enabling transformative durability improvements. The coaxial nanowire electrode (CANE) architecture consists of an array of vertically aligned nanowires, each comprising an ionomer core encapsulated by a nanoscale Pt film. This unique design eliminates the triple-phase boundary and replaces it with two double-phase boundaries, increasing Pt utilization. It also eliminates the need for carbon support and ionomer binder, enabling improved durability and faster mass transport. Fuel cell membrane electrode assemblies based on CANEs demonstrate extraordinary durability in accelerated stress tests (ASTs), with only 2% and 5% loss in performance after 5000 support AST cycles and 30000 catalysts AST cycles, respectively. The high power density and extremely high durability provided by CANEs can enable a paradigm shift from random electrodes based on unstable platinum nanoparticles dispersed on carbon to ordered electrodes based on durable Pt nanofilms, facilitating rapid deployment of fuel cells in transportation and other clean energy applications.

2.
ACS Appl Mater Interfaces ; 9(35): 29839-29848, 2017 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-28809471

RESUMO

Understanding the mechanisms associated with Pt/C electrocatalyst degradation in proton exchange membrane fuel cell (PEMFC) cathodes is critical for the future development of higher-performing materials; however, there is a lack of information regarding Pt coarsening under PEMFC operating conditions within the cathode catalyst layer. We report a direct and quantitative 3D study of Pt dispersions on carbon supports (high surface area carbon (HSAC), Vulcan XC-72, and graphitized carbon) with varied surface areas, graphitic character, and Pt loadings ranging from 5 to 40 wt %. This is accomplished both before and after catalyst-cycling accelerated stress tests (ASTs) through observations of the cathode catalyst layer of membrane electrode assemblies. Electron tomography results show Pt nanoparticle agglomeration occurs predominantly at junctions and edges of aggregated graphitized carbon particles, leading to poor Pt dispersion in the as-prepared catalysts and increased coalescence during ASTs. Tomographic reconstructions of Pt/HSAC show much better initial Pt dispersions, less agglomeration, and less coarsening during ASTs in the cathode. However, a large loss of the electrochemically active surface area (ECSA) is still observed and is attributed to accelerated Pt dissolution and nanoparticle coalescence. Furthermore, a strong correlation between Pt particle/agglomerate size and measured ECSA is established and is proposed as a more useful metric than average crystallite size in predicting degradation behavior across different catalyst systems.

3.
J Electrochem Soc ; 160(9)2013.
Artigo em Inglês | MEDLINE | ID: mdl-34848891

RESUMO

The corrosion of carbon in the cathodes of proton-exchange-membrane fuel cells leads to electrode collapse, reduced active catalyst area, and increased surface hydrophilicity. While these effects have been linked to performance degradation over cell lifetime, the role of corrosion in the evolving water balance has not been clear. In this study, neutron imaging was used to evaluate the through-plane water distribution within several cells over the course of accelerated stress testing using potential holds and square-wave cycling. A dramatic decrease in water retention was observed in each cell after the cathode was severely corroded. The increasing hydrophilic effect of carbon surface oxidation (quantified by ex situ X-ray photoelectron spectroscopy) was overwhelmed by the drying effect of increased internal heat generation. To evaluate this mechanism, the various observed electrode changes are included in a multiphase, non-isothermal one-dimensional cell model, and the simulated alterations to cell performance and water content are compared with those observed experimentally. Simulation results are consistent with the idea that collapse and compaction of the catalyst layer is the dominant limitation to cell performance and not the lower amounts of active Pt surface area, and that higher temperature gradients result in drying out of the cell.

4.
J Am Chem Soc ; 131(50): 18096-104, 2009 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-19924901

RESUMO

Neutron reflectometry was used to examine the interactions of polymer electrolyte fuel cell (PEFC) materials that comprise the triple-phase interface. Smooth, idealized layers of Nafion on glassy carbon (GC) and Pt surfaces were used to experimentally model the PEFC electrode interfaces. Different multilayer structures of Nafion were found in contact with the Pt or GC surfaces. These structures showed separate hydrophobic and hydrophilic domains formed within the Nafion layer when equilibrated with saturated D(2)O vapor. A hydrophobic Nafion region was formed adjacent to a Pt film. However, when Nafion was in contact with a PtO surface, the Nafion at the Pt interface became hydrophilic. The adsorbed oxide layer caused a long-range restructuring of the perfluorosulfonic acid polymer chains that comprise Nafion. The thicknesses of the hydrophobic and hydrophilic domains changed to the same magnitude when the oxide layer was present compared to a thin hydrophobic domain in contact with Pt. A three-layer Nafion structure was formed when Nafion was in direct contact with GC. The findings in this research are direct experimental evidence that both the interfacial and long-range structural properties of Nafion are affected by the material with which it is in contact. Evidence of physical changes of aged Nafion films was obtained, and the results showed a permanent increase in the thickness of the Nafion film and a decrease in the scattering length density (SLD), which are attributed to irreversible swelling of the Nafion film. The aging also resulted in a decrease in the SLD of the GC substrate, which is likely due to either an increase in surface oxidation of the carbon or loss of carbon mass at the GC surface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...