Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Metab ; 35(8): 1373-1389.e8, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37527658

RESUMO

There has been an intense focus to uncover the molecular mechanisms by which fasting triggers the adaptive cellular responses in the major organs of the body. Here, we show that in mice, hepatic S-adenosylmethionine (SAMe)-the principal methyl donor-acts as a metabolic sensor of nutrition to fine-tune the catabolic-fasting response by modulating phosphatidylethanolamine N-methyltransferase (PEMT) activity, endoplasmic reticulum-mitochondria contacts, ß-oxidation, and ATP production in the liver, together with FGF21-mediated lipolysis and thermogenesis in adipose tissues. Notably, we show that glucagon induces the expression of the hepatic SAMe-synthesizing enzyme methionine adenosyltransferase α1 (MAT1A), which translocates to mitochondria-associated membranes. This leads to the production of this metabolite at these sites, which acts as a brake to prevent excessive ß-oxidation and mitochondrial ATP synthesis and thereby endoplasmic reticulum stress and liver injury. This work provides important insights into the previously undescribed function of SAMe as a new arm of the metabolic adaptation to fasting.


Assuntos
Neoplasias Hepáticas , S-Adenosilmetionina , Camundongos , Animais , S-Adenosilmetionina/metabolismo , Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Jejum , Trifosfato de Adenosina/metabolismo , Metionina Adenosiltransferase/metabolismo , Fosfatidiletanolamina N-Metiltransferase/metabolismo
2.
Int J Mol Sci ; 23(14)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35887021

RESUMO

Metastasis is a leading cause of mortality and poor prognosis in colorectal cancer (CRC). Thus, the identification of new compounds targeting cell migration represents a major clinical challenge. Recent findings evidenced a central role for dysregulated Notch in CRC and a correlation between Notch overexpression and tumor metastasis. MicroRNAs (miRNAs) have been reported to cross-talk with Notch for its regulation. Therefore, restoring underexpressed miRNAs targeting Notch could represent an encouraging therapeutic approach against CRC. In this context, S-adenosyl-L-methionine (AdoMet), the universal biological methyl donor, being able to modulate the expression of oncogenic miRNAs could act as a potential antimetastatic agent. Here, we showed that AdoMet upregulated the onco-suppressor miRNAs-34a/-34c/-449a and inhibited HCT-116 and Caco-2 CRC cell migration. This effect was associated with reduced expression of migration-/EMT-related protein markers. We also found that, in colorectal and triple-negative breast cancer cells, AdoMet inhibited the expression of Notch gene, which, by luciferase assay, resulted the direct target of miRNAs-34a/-34c/-449a. Gain- and loss-of-function experiments with miRNAs mimics and inhibitors demonstrated that AdoMet exerted its inhibitory effects by upregulating miRNAs-34a/-34c/-449a. Overall, these data highlighted AdoMet as a novel Notch inhibitor and suggested that the antimetastatic effects of AdoMet involve the miRNA-mediated targeting of Notch signaling pathway.


Assuntos
Neoplasias Colorretais , MicroRNAs , Células CACO-2 , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/metabolismo , S-Adenosilmetionina/metabolismo , S-Adenosilmetionina/farmacologia , Transdução de Sinais
3.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502219

RESUMO

Colorectal cancer (CRC) is the second deadliest cancer worldwide despite significant advances in both diagnosis and therapy. The high incidence of CRC and its poor prognosis, partially attributed to multi-drug resistance and antiapoptotic activity of cancer cells, arouse strong interest in the identification and development of new treatments. S-Adenosylmethionine (AdoMet), a natural compound and a nutritional supplement, is well known for its antiproliferative and proapoptotic effects as well as for its potential in overcoming drug resistance in many kinds of human tumors. Here, we report that AdoMet enhanced the antitumor activity of 5-Fluorouracil (5-FU) in HCT 116p53+/+ and in LoVo CRC cells through the inhibition of autophagy, induced by 5-FU as a cell defense mechanism to escape the drug cytotoxicity. Multiple drug resistance is mainly due to the overexpression of drug efflux pumps, such as P-glycoprotein (P-gp). We demonstrate here that AdoMet was able to revert the 5-FU-induced upregulation of P-gp expression and to decrease levels of acetylated NF-κB, the activated form of NF-κB, the major antiapoptotic factor involved in P-gp-related chemoresistance. Overall, our data show that AdoMet, was able to overcome 5-FU chemoresistance in CRC cells by targeting multiple pathways such as autophagy, P-gp expression, and NF-κB signaling activation and provided important implications for the development of new adjuvant therapies to improve CRC treatment and patient outcomes.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Neoplasias Colorretais/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , NF-kappa B/metabolismo , S-Adenosilmetionina/farmacologia , Antimetabólitos Antineoplásicos/farmacologia , Apoptose , Proliferação de Células , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Sinergismo Farmacológico , Quimioterapia Combinada , Humanos , NF-kappa B/genética , Células Tumorais Cultivadas
4.
Cancers (Basel) ; 13(13)2021 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-34209866

RESUMO

Epigenetics includes modifications in DNA methylation, histone and chromatin structure, and expression of non-coding RNAs (ncRNAs), especially microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Knowledge of the relationships between S-adenosylmethionine (AdoMet or SAM), the universal methyl donor for all epigenetic methylation reactions and miRNAs or lncRNAs in human cancer may provide helpful insights for the development of new end more effective anticancer therapeutic approaches. In recent literature, a complex network of mutual interconnections between AdoMet and miRNAs or lncRNAs has been reported and discussed. Indeed, ncRNAs expression may be regulated by epigenetic mechanisms such as DNA and RNA methylation and histone modifications. On the other hand, miRNAs or lncRNAs may influence the epigenetic apparatus by modulating the expression of its enzymatic components at the post-transcriptional level. Understanding epigenetic mechanisms, such as dysregulation of miRNAs/lncRNAs and DNA methylation, has become of central importance in modern research. This review summarizes the recent findings on the mechanisms by which AdoMet and miRNA/lncRNA exert their bioactivity, providing new insights to develop innovative and more efficient anticancer strategies based on the interactions between these epigenetic modulators.

5.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374288

RESUMO

PURPOSE: In order to study novel therapeutic approaches taking advantage of natural compounds showing anticancer and anti-proliferative effects, we focused our interest on S-adenosyl-l-methionine, a naturally occurring sulfur-containing nucleoside synthesized from adenosine triphosphate and methionine by methionine adenosyltransferase, and its potential in overcoming drug resistance in colon cancer cells devoid of p53. RESULTS: In the present study, we demonstrated that S-adenosyl-l-methionine overcomes uL3-mediated drug resistance in p53 deleted colon cancer cells. In particular, we demonstrated that S-adenosyl-l-methionine causes cell cycle arrest at the S phase; inhibits autophagy; augments reactive oxygen species; and induces apoptosis in these cancer cells. CONCLUSIONS: Results reported in this paper led us to propose S-adenosyl-l-methionine as a potential promising agent for cancer therapy by examining p53 and uL3 profiles in tumors to yield a better clinical outcomes.


Assuntos
Neoplasias do Colo , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Deleção de Genes , Proteínas Ribossômicas/metabolismo , S-Adenosilmetionina/farmacologia , Proteína Supressora de Tumor p53/deficiência , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Células HCT116 , Humanos , Proteína Ribossômica L3 , Proteínas Ribossômicas/genética , Proteína Supressora de Tumor p53/metabolismo
6.
Cancers (Basel) ; 12(12)2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33297397

RESUMO

(1) Purpose: The methyl donor S-Adenosylmethionine (AdoMet) has been widely explored as a therapeutic compound, and its application-alone or in combination with other molecules-is emerging as a potential effective strategy for the treatment and chemoprevention of tumours. In this study, we investigated the antitumor activity of AdoMet in Laryngeal Squamous Cell Carcinoma (LSCC), exploring the underlying mechanisms. (2) Results: We demonstrated that AdoMet induced ROS generation and triggered autophagy with a consistent increase in LC3B-II autophagy-marker in JHU-SCC-011 and HNO210 LSCC cells. AdoMet induced ER-stress and activated UPR signaling through the upregulation of the spliced form of XBP1 and CHOP. To gain new insights into the molecular mechanisms underlying the antitumor activity of AdoMet, we evaluated the regulation of miRNA expression profile and we found a downregulation of miR-888-5p. We transfected LSCC cells with miR-888-5p inhibitor and exposed the cells to AdoMet for 48 and 72 h. The combination of AdoMet with miR-888-5p inhibitor synergistically induced both apoptosis and inhibited cell migration paralleled by the up-regulation of MYCBP and CDH1 genes and of their targets. (3) Conclusion: Overall, these data highlighted that epigenetic reprogramming of miRNAs by AdoMet play an important role in inhibiting apoptosis and migration in LSCC cell lines.

7.
Int J Mol Sci ; 21(22)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202711

RESUMO

The present review summarizes the most recent studies focusing on the synergistic antitumor effect of the physiological methyl donor S-adenosylmethionine (AdoMet) in association with the main drugs used against breast cancer and head and neck squamous cell carcinoma (HNSCC), two highly aggressive and metastatic malignancies. In these two tumors the chemotherapy approach is recommended as the first choice despite the numerous side effects and recurrence of metastasis, so better tolerated treatments are needed to overcome this problem. In this regard, combination therapy with natural compounds, such as AdoMet, a molecule with pleiotropic effects on multiple cellular processes, is emerging as a suitable strategy to achieve synergistic anticancer efficacy. In this context, the analysis of studies conducted in the literature highlighted AdoMet as one of the most effective and promising chemosensitizing agents to be taken into consideration for inclusion in emerging antitumor therapeutic modalities such as nanotechnologies.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama , Neoplasias de Cabeça e Pescoço , S-Adenosilmetionina/uso terapêutico , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sinergismo Farmacológico , Feminino , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Masculino , Metástase Neoplásica , S-Adenosilmetionina/agonistas , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
8.
J Exp Zool A Ecol Integr Physiol ; 331(7): 367-373, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31145556

RESUMO

The aim of this paper is to assess, by real-time polymerase chain reaction and in situ hybridization, the expression of estrogen receptors ER1 and ER2 during the ovarian cycle of Mytilus galloprovincialis. By considering four phases of the reproductive cycle, that is stasis and previtellogenic stage (Stage 0), early vitellogenesis (Stage I), vitellogenesis (Stage II), full-grown oocyte (Stage III), our investigation demonstrates that the two receptors are differently expressed during the phases investigated of the ovarian cycle: ER1 reaches the highest level at Stage III, whereas ER2 reaches the highest level at Stage II, with ER2 always present at higher levels than ER1. The stage-dependent receptor expression was recorded within oocytes, follicle cells, and adipogranular cells. No ER1 and ER2 messenger RNAs (mRNAs) were found within vesicular cells. It is to be noted that the ER1 and ER2 expression within the growing oocytes, the follicular, and adipogranular cells overlaps with that of the mRNA for vitellogenin in the same cells, strongly suggesting that in Mytilus, as in vertebrates studied so far, the vitellogenin expression is under the control of estrogens.


Assuntos
Ciclo Menstrual , Mytilus/fisiologia , Receptores de Estrogênio/metabolismo , Animais , Feminino , Regulação da Expressão Gênica , Hibridização In Situ , Oócitos/metabolismo , Folículo Ovariano/metabolismo , RNA Mensageiro , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Estrogênio/genética , Vitelogênese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...