Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Free Radic Biol Med ; 216: 24-32, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460742

RESUMO

Reactive oxygen species (ROS) produced by NADPH oxidases (NOX, a key source of ROS in vascular cells) are involved in the regulation of vascular tone, but this has been explored mainly for adult organisms. Importantly, the mechanisms of vascular tone regulation differ significantly in early postnatal ontogenesis and adulthood, while the vasomotor role of ROS in immature systemic arteries is poorly understood. We tested the hypothesis that the functional contribution of NADPH oxidase-derived ROS to the regulation of peripheral arterial tone is higher in the early postnatal period than in adulthood. We studied saphenous arteries from 10- to 15-day-old ("young") and 3- to 4-month-old ("adult") male rats using lucigenin-enhanced chemiluminescence, quantitative PCR, Western blotting, and isometric myography. We demonstrated that both basal and NADPH-stimulated superoxide anion radical (O2•-) production was significantly higher in the arteries from young in comparison to adult rats. Importantly, pan-inhibitor of NADPH oxidase VAS2870 (10 µM) reduced NADPH-induced O2•- production in arteries of young rats. Saphenous arteries of both young and adult rats demonstrated high levels of Nox2 and Nox4 mRNAs, while Nox1 and Nox3 mRNAs were not detected. The protein contents of NOX2 and NOX4 were significantly higher in arterial tissue of young compared to adult animals. Moreover, VAS2870 (10 µM) had no effect on methoxamine-induced contractile responses of adult arteries but decreased them significantly in young arteries; such effect of VAS2870 persisted after removal of the endothelium. Finally, NOX2 inhibitor GSK2795039 (10 µM), but not NOX1/4 inhibitor GKT137831 (10 µM) weakened methoxamine-induced contractile responses of arteries from young rats. Thus, ROS produced by NOX2 have a pronounced contractile influence in saphenous artery smooth muscle cells of young, but not adult rats, which is associated with the increased vascular content of NOX2 protein at this age.


Assuntos
Artérias , NADPH Oxidases , Ratos , Masculino , Animais , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , NADP , Metoxamina , Artérias/fisiologia , NADPH Oxidase 1/genética , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Superóxidos/metabolismo
2.
Pediatr Res ; 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310195

RESUMO

BACKGROUND: Perinatal hypoxia affects a lot of neonates worldwide every year, however its effects on the functioning of systemic circulation are not clear yet. We aimed at investigation the effects of perinatal hypoxia on the second day of life on the functioning of the rat systemic vasculature in early postnatal period. METHODS: 2-day-old male rat pups were exposed to normobaric hypoxia (8% O2, 92% N2) for 2 hours. At the 11-14 days cutaneous (saphenous) arteries were isolated and studied by wire myography and Western blotting. RESULTS: Hypoxia weakened the contribution of anticontractile influence of NO, but did not affect the contribution of Rho-kinase or Kv7 channels to the contraction to α1-adrenergic agonist methoxamine. The content of eNOS and protein kinase G were not altered by hypoxic conditions. CONCLUSION: Perinatal hypoxia in rats at the second day of life leads to the decrease of anticontractile effect of NO in the systemic arteries in early postnatal ontogenesis (at the age of 11-14 days). Decreased anticontractile effect of NO can be the reason for insufficient blood supply and represent a risk factor for the development of cardiovascular disorders. IMPACT: The mechanisms of perinatal hypoxia influences on systemic circulation are almost unknown. We have shown that perinatal hypoxia weakens anticontractile influence of nitric oxide in early postnatal period. The influence of perinatal hypoxia on systemic circulation should be taken into account during treatment of newborns suffered from the lack of oxygen.

3.
Front Physiol ; 13: 1003073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388097

RESUMO

Introduction: Functional tests and training regimens intensity-controlled by an individual are used in sport practice, clinical rehabilitation, and space medicine. The model of voluntary wheel running in rats can be used to explore molecular mechanisms of such training regimens in humans. Respiratory and locomotor muscles demonstrate diverse adaptations to treadmill exercise, but the effects of voluntary exercise training on these muscle types have not been compared yet. Therefore, this work aimed at the effects of voluntary ET on rat triceps brachii and diaphragm muscles with special attention to reactive oxygen species, which regulate muscle plasticity during exercise. Methods: Male Wistar rats were distributed into exercise trained (ET) and sedentary (Sed) groups. ET group had free access to running wheels, running activity was continuously recorded and analyzed using the original hardware/software complex. After 8 weeks, muscle protein contents were studied using Western blotting. Results: ET rats had increased heart ventricular weights but decreased visceral/epididymal fat weights and blood triglyceride level compared to Sed. The training did not change corticosterone, testosterone, and thyroid hormone levels, but decreased TBARS content in the blood. ET rats demonstrated higher contents of OXPHOS complexes in the triceps brachii muscle, but not in the diaphragm. The content of SOD2 increased, and the contents of NOX2 and SOD3 decreased in the triceps brachii muscle of ET rats, while there were no such changes in the diaphragm. Conclusion: Voluntary wheel running in rats is intensive enough to govern specific adaptations of muscle fibers in locomotor, but not respiratory muscle.

4.
Int J Mol Sci ; 23(11)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35682667

RESUMO

The activity of many vasomotor signaling pathways strongly depends on extracellular/intracellular pH. Nitric oxide (NO) is one of the most important vasodilators produced by the endothelium. In this review, we present evidence that in most vascular beds of mature mammalian organisms metabolic or respiratory acidosis increases functional endothelial NO-synthase (eNOS) activity, despite the observation that direct effects of low pH on eNOS enzymatic activity are inhibitory. This can be explained by the fact that acidosis increases the activity of signaling pathways that positively regulate eNOS activity. The role of NO in the regulation of vascular tone is greater in early postnatal ontogenesis compared to adulthood. Importantly, in early postnatal ontogenesis acidosis also augments functional eNOS activity and its contribution to the regulation of arterial contractility. Therefore, the effect of acidosis on total peripheral resistance in neonates may be stronger than in adults and can be one of the reasons for an undesirable decrease in blood pressure during neonatal asphyxia. The latter, however, should be proven in future studies.


Assuntos
Acidose , Endotélio Vascular , Acidose/metabolismo , Adulto , Animais , Pressão Sanguínea , Endotélio Vascular/metabolismo , Humanos , Recém-Nascido , Mamíferos/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Vasodilatadores/farmacologia
5.
Curr Res Physiol ; 5: 8-15, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34984343

RESUMO

BACKGROUND: Antenatal/early postnatal hypothyroidism weakens NO-mediated anticontractile influence of endothelium in coronary arteries of adult rats, but it remains unclear whether this occurs in other vascular regions. We hypothesized that developmental thyroid deficiency is followed by region-specific changes in the endothelial NO-pathway activity in systemic vasculature. To explore this, we estimated the effects of antenatal/early postnatal hypothyroidism on NO-pathway activity and its potential local control mechanisms in rat mesenteric and skeletal muscle (sural) arteries. METHODS: Dams were treated with 6-propyl-2-thiouracil (PTU) in drinking water (0.0007%) during pregnancy and 2 weeks postpartum; control (CON) females received PTU-free water. Adult offspring (10-12-weeks) arteries were studied by wire myography, qPCR, and Western blotting. RESULTS: Endothelium removal or inhibition of NO-synthase with L-NNA augmented contractile responses to α1-adrenoceptor agonist methoxamine. In PTU compared to CON group, these effects were stronger in sural arteries, but did not differ in mesenteric arteries. The responses of both arteries to NO-donor DEA/NO were similar in CON and PTU rats. mRNA contents of deiodinase 2 and thyroid hormone receptor α were similar in mesenteric arteries of two groups but were elevated in sural arteries of PTU group compared to CON. The abundance of eNOS protein was higher in sural arteries of PTU compared to CON rats. CONCLUSION: Antenatal/early postnatal hypothyroidism is followed by an increase in NO-mediated anticontractile influence in sural, but not in mesenteric arteries of adult animals. The diversity of hypothyroidism effects may be due to different alterations of local T3 synthesis/reception in different vascular beds.

6.
Int J Mol Sci ; 22(22)2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34830206

RESUMO

Nitric oxide (NO) has been shown to stimulate differentiation and increase the survival of ganglionic sympathetic neurons. The proportion of neuronal NOS-immunoreactive sympathetic preganglionic neurons is particularly high in newborn rats and decreases with maturation. However, the role of NO in the development of vascular sympathetic innervation has never been studied before. We tested the hypothesis that intrauterine NO deficiency weakened the development of vascular sympathetic innervation and thereby changed the contractility of peripheral arteries and blood pressure level in two-week-old offspring. Pregnant rats consumed NOS inhibitor L-NAME (250 mg/L in drinking water) from gestational day 10 until delivery. Pups in the L-NAME group had a reduced body weight and blood level of NO metabolites at 1-2 postnatal days. Saphenous arteries from two-week-old L-NAME offspring demonstrated a lower density of sympathetic innervation, a smaller inner diameter, reduced maximal active force and decreased α-actin/ß-actin mRNA expression ratio compared to the controls. Importantly, pups in the L-NAME group exhibited decreased blood pressure levels before, but not after, ganglionic blockade with chlorisondamine. In conclusion, intrauterine L-NAME exposure is followed by the impaired development of the sympathetic nervous system in early postnatal life, which is accompanied by the structural and functional remodeling of arterial blood vessels.


Assuntos
Artérias/inervação , Inibidores Enzimáticos/farmacologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Sistema Nervoso Simpático/embriologia , Sistema Nervoso Simpático/crescimento & desenvolvimento , Remodelação Vascular/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Artérias/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Feminino , Idade Gestacional , Masculino , Modelos Animais , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/metabolismo , Gravidez , Ratos , Ratos Wistar , Sistema Nervoso Simpático/metabolismo
7.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360769

RESUMO

Nitric oxide (NO) deficiency during pregnancy is a key reason for preeclampsia development. Besides its important vasomotor role, NO is shown to regulate the cell transcriptome. However, the role of NO in transcriptional regulation of developing smooth muscle has never been studied before. We hypothesized that in early ontogeny, NO is important for the regulation of arterial smooth muscle-specific genes expression. Pregnant rats consumed NO-synthase inhibitor L-NAME (500 mg/L in drinking water) from gestational day 10 till delivery, which led to an increase in blood pressure, a key manifestation of preeclampsia. L-NAME reduced blood concentrations of NO metabolites in dams and their newborn pups, as well as relaxations of pup aortic rings to acetylcholine. Using qPCR, we demonstrated reduced abundances of the smooth muscle-specific myosin heavy chain isoform, α-actin, SM22α, and L-type Ca2+-channel mRNAs in the aorta of newborn pups from the L-NAME group compared to control pups. To conclude, the intrauterine NO deficiency weakens gene expression specific for a contractile phenotype of arterial smooth muscle in newborn offspring.


Assuntos
Diferenciação Celular , Músculo Liso Vascular/metabolismo , Óxido Nítrico/deficiência , Complicações na Gravidez/metabolismo , Útero/metabolismo , Animais , Animais Recém-Nascidos , Feminino , Regulação da Expressão Gênica , Proteínas Musculares/biossíntese , Músculo Liso Vascular/patologia , NG-Nitroarginina Metil Éster/farmacologia , Óxido Nítrico/metabolismo , Gravidez , Complicações na Gravidez/induzido quimicamente , Complicações na Gravidez/patologia , Ratos , Ratos Wistar , Útero/patologia
8.
J Endocrinol ; 235(2): 137-151, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28794003

RESUMO

The mechanisms of vascular alterations resulting from early thyroid hormones deficiency are poorly understood. We tested the hypothesis that antenatal/early postnatal hypothyroidism would alter the activity of endothelial NO pathway and Rho-kinase pathway, which are specific for developing vasculature. Dams were treated with propylthiouracil (PTU, 7 ppm) in drinking water during gestation and 2 weeks after delivery, and their progeny had normal body weight but markedly reduced blood levels of thyroid hormones (ELISA). Small arteries from 2-week-old male pups were studied using wire myography, qPCR and Western blotting. Mesenteric arteries of PTU pups, compared to controls, demonstrated smaller maximum response to α1-adrenergic agonist methoxamine and reduced mRNA contents of smooth muscle differentiation markers α-actin and SERCA2A. Inhibition of basal NO synthesis by l-NNA led to tonic contraction of mesenteric arteries and augmented their contractile responses to methoxamine; both l-NNA effects were impaired in PTU pups. PTU pups demonstrated lower blood level of NO metabolites compared to control group (Griess reaction). Rho-kinase inhibitor Y27632 strongly reduced mesenteric arteries responses to methoxamine in PTU pups, that was accompanied by elevated Rho-kinase content in their arteries in comparison to control ones. Unlike mesenteric, saphenous arteries of PTU pups, compared to controls, had no changes in α-actin and SERCA2A contents and in responses to l-NNA and Y27632. In conclusion, thyroid hormones deficiency suppresses the anticontractile effect of NO and potentiates the procontractile Rho-kinase effects in mesenteric arteries of 2-week-old pups. Such alterations disturb perinatal cardiovascular homeostasis and might lead to cardiovascular pathologies in adulthood.


Assuntos
Hipotireoidismo/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal , Resistência Vascular/fisiologia , Animais , Glicemia , Feminino , Regulação da Expressão Gênica , Hipotireoidismo/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Gravidez , Propiltiouracila/toxicidade , RNA Mensageiro , Distribuição Aleatória , Ratos , Receptores alfa dos Hormônios Tireóideos/genética , Receptores alfa dos Hormônios Tireóideos/metabolismo , Hormônios Tireóideos/metabolismo , Iodotironina Desiodinase Tipo II
9.
Nitric Oxide ; 63: 21-28, 2017 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-28017871

RESUMO

INTRODUCTION: Thyroid hormones are essential for proper development of many systems and organs, including circulatory system. Thyroid deficiency during pregnancy may affect the cardiovascular function in children early on and later in adulthood. However, long-term effects of early thyroid deficiency are poorly understood. We hypothesized that antenatal/early postnatal hypothyroidism will influence anticontractile effect of NO in coronary arteries of adult rats. DESIGN AND METHODS: To model antenatal/early postnatal hypothyroidism dams were treated with 6-propyl-2-thiouracil (PTU) in drinking water (0.0007%, w/v) from the first day of pregnancy till 2 weeks after delivery. Control females were supplied with pure water. Their male offspring was grown up till the age of 10-12 weeks. Systolic blood pressure was measured using tail cuff method. Septal coronary arteries were isolated and studied in wire myograph. Blood serum thyroid hormones concentrations (ELISA) and NO metabolites level (Griess method) were evaluated. RESULTS: At the age of 10-12 weeks thyroid hormones, TSH concentrations, NO metabolites and systolic blood pressure level didn't differ between groups. Arterial responses to acetylcholine and exogenous NO-donor DEA/NO were similar in control and PTU groups. Along with that, in control rats endothelium denudation strongly potentiated basal tone of arteries and their contractile responses to thromboxane A2 receptor agonist U46619. The effects of endothelium denudation were absent in PTU rats indicating that anticontractile effect of endothelium is abolished in their arteries. Further, NO-synthase inhibitor L-NNA (100 µM) caused significant elevation of basal tone and increased U46619-induced contraction of endothelium-intact arteries only in control rats, while had no effect in PTU group. CONCLUSIONS: Our data demonstrate that NO-mediated anticontractile effect of endothelium is eliminated in coronary arteries of adult rats, which suffered from antenatal/early postnatal hypothyroidism. Therefore, maternal thyroid hormones deficiency may have detrimental consequences in adult offspring including coronary circulation pathologies, despite normal blood levels of thyroid hormones.


Assuntos
Vasos Coronários/fisiopatologia , Endotélio Vascular/fisiopatologia , Hipotireoidismo/fisiopatologia , Óxido Nítrico/fisiologia , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Animais , Dietilaminas/farmacologia , Feminino , Masculino , Contração Muscular/efeitos dos fármacos , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Nitroarginina/farmacologia , Ratos Wistar
10.
Nitric Oxide ; 55-56: 1-9, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26923819

RESUMO

OBJECTIVE: During maturation the vascular system undergoes structural and functional remodeling. At the systemic level it results in a gradual increase of arterial blood pressure during postnatal ontogenesis. The mechanisms of maintaining the blood pressure at a comparatively low level during the early postnatal development are not completely understood. Recently we showed that the hindlimb arteries of young (1-2 wk-old) rats exhibited an enhanced endothelial NO-pathway activity, which weakened their contractile responsiveness compared to the arteries of adult rats. Here we tested the hypothesis that an increased tonic endothelial NO production can take place in the whole vascular system leading to a decreased level of systemic blood pressure in young rats. DESIGN AND METHODS: Segments of small mesenteric, saphenous, sural and intrarenal arteries were isolated from the young (2 wk-old), juvenile (4 wk-old) and adult (10-12 wk-old) male rats and tested in a wire isometric myograph. Anticontractile effect of NO was evaluated by the effects of NOS inhibitor L-NNA on both arterial spontaneous tone and constrictor responses to methoxamine (α1-adrenoceptor agonist). In addition, eNOS and arginase-2 mRNA expression in arterial preparations by qPCR and serum nitrite/nitrate levels by Griess reaction were estimated. Blood pressure with an intra-carotid artery catheter was measured in conscious rats. RESULTS: In all arteries of 2 wk rats except the renal ones, L-NNA exposure resulted in a considerable tonic contraction and a remarkable enhancement of contractile responses to methoxamine. The effect of L-NNA gradually decreased with age and by 10-12 weeks became very small in the mesenteric arteries and disappeared in the sural and saphenous arteries. Although no difference in eNOS mRNA expression was found, the content of arginase-2 mRNA was significantly lower in young rats compared to adults. Serum levels of NO metabolites were two-fold higher in 2 wk-old rats than in adult rats. Along with that, arterial blood pressure was by half lower but rose more prominently after administration of l-NAME in young rats than in adults. CONCLUSIONS: In young rats, tonic release of NO by the endothelium considerably weakens contractile responses of arteries supplying intestine, skin and skeletal muscles, which receive a high proportion of the cardiac output. Such anticontractile effect of NO can be an important mechanism responsible for the blood pressure reduction in immature circulatory system.


Assuntos
Pressão Arterial/efeitos dos fármacos , Endotélio Vascular/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Fatores Etários , Animais , Arginase/genética , Arginase/metabolismo , Artérias/efeitos dos fármacos , Artérias/fisiologia , Hidrazinas/farmacologia , Masculino , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/fisiologia , NG-Nitroarginina Metil Éster/farmacologia , Nitratos/sangue , Doadores de Óxido Nítrico/farmacologia , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/sangue , Nitroarginina/farmacologia , RNA Mensageiro/metabolismo , Ratos Wistar
11.
J Appl Physiol (1985) ; 118(7): 830-8, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25593287

RESUMO

Conditions during spaceflight, such as the loss of the head-to-foot gravity vector, are thought to potentially alter cerebral blood flow and vascular resistance. The purpose of the present study was to determine the effects of long-term spaceflight on the functional, mechanical, and structural properties of cerebral arteries. Male C57BL/6N mice were flown 30 days in a Bion-M1 biosatellite. Basilar arteries isolated from spaceflight (SF) (n = 6), habitat control (HC) (n = 6), and vivarium control (VC) (n = 16) mice were used for in vitro functional and mechanical testing and histological structural analysis. The results demonstrate that vasoconstriction elicited through a voltage-gated Ca(2+) mechanism (30-80 mM KCl) and thromboxane A2 receptors (10(-8) - 3 × 10(-5) M U46619) are lower in cerebral arteries from SF mice. Inhibition of Rho-kinase activity (1 µM Y27632) abolished group differences in U46619-evoked contractions. Endothelium-dependent vasodilation elicited by acetylcholine (10 µM, 2 µM U46619 preconstriction) was virtually absent in cerebral arteries from SF mice. The pressure-diameter relation was lower in arteries from SF mice relative to that in HC mice, which was not related to differences in the extracellular matrix protein elastin or collagen content or the elastin/collagen ratio in the basilar arteries. Diameter, medial wall thickness, and medial cross-sectional area of unpressurized basilar arteries were not different among groups. These results suggest that the microgravity-induced attenuation of both vasoconstrictor and vasodilator properties may limit the range of vascular control of cerebral perfusion or impair the distribution of brain blood flow during periods of stress.


Assuntos
Adaptação Fisiológica/fisiologia , Artérias Cerebrais/fisiologia , Circulação Cerebrovascular/fisiologia , Voo Espacial , Sistema Vasomotor/fisiologia , Simulação de Ausência de Peso , Animais , Velocidade do Fluxo Sanguíneo/fisiologia , Cálcio/metabolismo , Artérias Cerebrais/anatomia & histologia , Módulo de Elasticidade/fisiologia , Endotélio Vascular/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Potássio de Abertura Dependente da Tensão da Membrana/fisiologia , Receptores de Tromboxano A2 e Prostaglandina H2/metabolismo , Astronave , Rigidez Vascular/fisiologia , Vasoconstrição/fisiologia , Vasodilatação/fisiologia
12.
Eur J Pharm Biopharm ; 87(1): 64-72, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24530427

RESUMO

When nanocarriers are used for drug delivery they can often achieve superior therapeutic outcomes over standard drug formulations. However, concerns about their adverse effects are growing due to the association between exposure to certain nanosized particles and cardiovascular events. Here we examine the impact of intravenously injected drug-free nanocarriers on the cardiovasculature at both the systemic and organ levels. We combine in vivo and in vitro methods to enable monitoring of hemodynamic parameters in conscious rats, assessments of the function of the vessels after sub-chronic systemic exposure to nanocarriers and evaluation of the direct effect of nanocarriers on vascular tone. We demonstrate that nanocarriers can decrease blood pressure and increase heart rate in vivo via various mechanisms. Depending on the type, nanocarriers induce the dilation of the resistance arteries and/or change the responses induced by vasoconstrictor or vasodilator drugs. No direct correlation between physicochemical properties and cardiovascular effects of nanoparticles was observed. The proposed combination of methods empowers the studies of cardiovascular adverse effects of the nanocarriers.


Assuntos
Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Nanopartículas/efeitos adversos , Nanotubos de Carbono/efeitos adversos , Animais , Aorta Torácica/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Endotélio Vascular/efeitos dos fármacos , Frequência Cardíaca/efeitos dos fármacos , Técnicas In Vitro , Injeções Intravenosas , Masculino , Nanopartículas/administração & dosagem , Nanopartículas/química , Nanotubos de Carbono/química , Tamanho da Partícula , Ácidos Polimetacrílicos/administração & dosagem , Ácidos Polimetacrílicos/efeitos adversos , Ácidos Polimetacrílicos/química , Porosidade , Ratos Wistar , Silício/administração & dosagem , Silício/efeitos adversos , Silício/química , Propriedades de Superfície , Resistência Vascular/efeitos dos fármacos , Vasodilatação/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...