Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Trials ; 25(1): 308, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715118

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) is a frequent cause of hypoxemic respiratory failure with a mortality rate of approximately 30%. Identifying ARDS subphenotypes based on "focal" or "non-focal" lung morphology has the potential to better target mechanical ventilation strategies of individual patients. However, classifying morphology through chest radiography or computed tomography is either inaccurate or impractical. Lung ultrasound (LUS) is a non-invasive bedside tool that can accurately distinguish "focal" from "non-focal" lung morphology. We hypothesize that LUS-guided personalized mechanical ventilation in ARDS patients leads to a reduction in 90-day mortality compared to conventional mechanical ventilation. METHODS: The Personalized Mechanical Ventilation Guided by UltraSound in Patients with Acute Respiratory Distress Syndrome (PEGASUS) study is an investigator-initiated, international, randomized clinical trial (RCT) that plans to enroll 538 invasively ventilated adult intensive care unit (ICU) patients with moderate to severe ARDS. Eligible patients will receive a LUS exam to classify lung morphology as "focal" or "non-focal". Thereafter, patients will be randomized within 12 h after ARDS diagnosis to receive standard care or personalized ventilation where the ventilation strategy is adjusted to the morphology subphenotype, i.e., higher positive end-expiratory pressure (PEEP) and recruitment maneuvers for "non-focal" ARDS and lower PEEP and prone positioning for "focal" ARDS. The primary endpoint is all-cause mortality at day 90. Secondary outcomes are mortality at day 28, ventilator-free days at day 28, ICU length of stay, ICU mortality, hospital length of stay, hospital mortality, and number of complications (ventilator-associated pneumonia, pneumothorax, and need for rescue therapy). After a pilot phase of 80 patients, the correct interpretation of LUS images and correct application of the intervention within the safe limits of mechanical ventilation will be evaluated. DISCUSSION: PEGASUS is the first RCT that compares LUS-guided personalized mechanical ventilation with conventional ventilation in invasively ventilated patients with moderate and severe ARDS. If this study demonstrates that personalized ventilation guided by LUS can improve the outcomes of ARDS patients, it has the potential to shift the existing one-size-fits-all ventilation strategy towards a more individualized approach. TRIAL REGISTRATION: The PEGASUS trial was registered before the inclusion of the first patient, https://clinicaltrials.gov/ (ID: NCT05492344).


Assuntos
Pulmão , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial , Síndrome do Desconforto Respiratório , Ultrassonografia de Intervenção , Humanos , Síndrome do Desconforto Respiratório/terapia , Síndrome do Desconforto Respiratório/diagnóstico por imagem , Síndrome do Desconforto Respiratório/mortalidade , Respiração Artificial/métodos , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Resultado do Tratamento , Ultrassonografia de Intervenção/métodos , Fatores de Tempo , Estudos Multicêntricos como Assunto , Valor Preditivo dos Testes , Medicina de Precisão/métodos
2.
Crit Care ; 28(1): 151, 2024 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715131

RESUMO

BACKGROUND: Intensive care unit (ICU)-survivors have an increased risk of mortality after discharge compared to the general population. On ICU admission subphenotypes based on the plasma biomarker levels of interleukin-8, protein C and bicarbonate have been identified in patients admitted with acute respiratory distress syndrome (ARDS) that are prognostic of outcome and predictive of treatment response. We hypothesized that if these inflammatory subphenotypes previously identified among ARDS patients are assigned at ICU discharge in a more general critically ill population, they are associated with short- and long-term outcome. METHODS: A secondary analysis of a prospective observational cohort study conducted in two Dutch ICUs between 2011 and 2014 was performed. All patients discharged alive from the ICU were at ICU discharge adjudicated to the previously identified inflammatory subphenotypes applying a validated parsimonious model using variables measured median 10.6 h [IQR, 8.0-31.4] prior to ICU discharge. Subphenotype distribution at ICU discharge, clinical characteristics and outcomes were analyzed. As a sensitivity analysis, a latent class analysis (LCA) was executed for subphenotype identification based on plasma protein biomarkers at ICU discharge reflective of coagulation activation, endothelial cell activation and inflammation. Concordance between the subphenotyping strategies was studied. RESULTS: Of the 8332 patients included in the original cohort, 1483 ICU-survivors had plasma biomarkers available and could be assigned to the inflammatory subphenotypes. At ICU discharge 6% (n = 86) was assigned to the hyperinflammatory and 94% (n = 1397) to the hypoinflammatory subphenotype. Patients assigned to the hyperinflammatory subphenotype were discharged with signs of more severe organ dysfunction (SOFA scores 7 [IQR 5-9] vs. 4 [IQR 2-6], p < 0.001). Mortality was higher in patients assigned to the hyperinflammatory subphenotype (30-day mortality 21% vs. 11%, p = 0.005; one-year mortality 48% vs. 28%, p < 0.001). LCA deemed 2 subphenotypes most suitable. ICU-survivors from class 1 had significantly higher mortality compared to class 2. Patients belonging to the hyperinflammatory subphenotype were mainly in class 1. CONCLUSIONS: Patients assigned to the hyperinflammatory subphenotype at ICU discharge showed significantly stronger anomalies in coagulation activation, endothelial cell activation and inflammation pathways implicated in the pathogenesis of critical disease and increased mortality until one-year follow up.


Assuntos
Biomarcadores , Unidades de Terapia Intensiva , Alta do Paciente , Síndrome do Desconforto Respiratório , Humanos , Estudos Prospectivos , Feminino , Masculino , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/mortalidade , Síndrome do Desconforto Respiratório/classificação , Síndrome do Desconforto Respiratório/sangue , Idoso , Biomarcadores/sangue , Biomarcadores/análise , Alta do Paciente/estatística & dados numéricos , Estudos de Coortes , Inflamação/sangue , Inflamação/mortalidade , Países Baixos/epidemiologia , Fenótipo , Interleucina-8/sangue , Interleucina-8/análise
3.
Crit Care ; 28(1): 96, 2024 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521944

RESUMO

BACKGROUND: Acute respiratory distress syndrome (ARDS) poses challenges in early identification. Exhaled breath contains metabolites reflective of pulmonary inflammation. AIM: To evaluate the diagnostic accuracy of breath metabolites for ARDS in invasively ventilated intensive care unit (ICU) patients. METHODS: This two-center observational study included critically ill patients receiving invasive ventilation. Gas chromatography and mass spectrometry (GC-MS) was used to quantify the exhaled metabolites. The Berlin definition of ARDS was assessed by three experts to categorize all patients into "certain ARDS", "certain no ARDS" and "uncertain ARDS" groups. The patients with "certain" labels from one hospital formed the derivation cohort used to train a classifier built based on the five most significant breath metabolites. The diagnostic accuracy of the classifier was assessed in all patients from the second hospital and combined with the lung injury prediction score (LIPS). RESULTS: A total of 499 patients were included in this study. Three hundred fifty-seven patients were included in the derivation cohort (60 with certain ARDS; 17%), and 142 patients in the validation cohort (47 with certain ARDS; 33%). The metabolites 1-methylpyrrole, 1,3,5-trifluorobenzene, methoxyacetic acid, 2-methylfuran and 2-methyl-1-propanol were included in the classifier. The classifier had an area under the receiver operating characteristics curve (AUROCC) of 0.71 (CI 0.63-0.78) in the derivation cohort and 0.63 (CI 0.52-0.74) in the validation cohort. Combining the breath test with the LIPS does not significantly enhance the diagnostic performance. CONCLUSION: An exhaled breath metabolomics-based classifier has moderate diagnostic accuracy for ARDS but was not sufficiently accurate for clinical use, even after combination with a clinical prediction score.


Assuntos
Lesão Pulmonar , Pneumonia , Síndrome do Desconforto Respiratório , Humanos , Cuidados Críticos , Pulmão , Síndrome do Desconforto Respiratório/diagnóstico
5.
Lancet Respir Med ; 12(4): 323-336, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38408467

RESUMO

Sepsis is a common and deadly condition. Within the current model of sepsis immunobiology, the framing of dysregulated host immune responses into proinflammatory and immunosuppressive responses for the testing of novel treatments has not resulted in successful immunomodulatory therapies. Thus, the recent focus has been to parse observable heterogeneity into subtypes of sepsis to enable personalised immunomodulation. In this Personal View, we highlight that many fundamental immunological concepts such as resistance, disease tolerance, resilience, resolution, and repair are not incorporated into the current sepsis immunobiology model. The focus for addressing heterogeneity in sepsis should be broadened beyond subtyping to encompass the identification of deterministic molecular networks or dominant mechanisms. We explicitly reframe the dysregulated host immune responses in sepsis as altered homoeostasis with pathological disruption of immune-driven resistance, disease tolerance, resilience, and resolution mechanisms. Our proposal highlights opportunities to identify novel treatment targets and could enable successful immunomodulation in the future.


Assuntos
Resistência à Doença , Sepse , Humanos , Imunomodulação
6.
Intensive Care Med Exp ; 12(1): 14, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345723

RESUMO

BACKGROUND: Exhaled volatile organic compounds (VOCs), particularly hydrocarbons from oxidative stress-induced lipid peroxidation, are associated with hyperoxia exposure. However, important heterogeneity amongst identified VOCs and concerns about their precise pathophysiological origins warrant translational studies assessing their validity as a marker of hyperoxia-induced oxidative stress. Therefore, this study sought to examine changes in VOCs previously associated with the oxidative stress response in hyperoxia-exposed lung epithelial cells. METHODS: A549 alveolar epithelial cells were exposed to hyperoxia for 24 h, or to room air as normoxia controls, or hydrogen peroxide as oxidative-stress positive controls. VOCs were sampled from the headspace, analysed by gas chromatography coupled with mass spectrometry and compared by targeted and untargeted analyses. A secondary analysis of breath samples from a large cohort of critically ill adult patients assessed the association of identified VOCs with clinical oxygen exposure. RESULTS: Following cellular hyperoxia exposure, none of the targeted VOCs, previously proposed as breath markers of oxidative stress, were increased, and decane was significantly decreased. Untargeted analysis did not reveal novel identifiable hyperoxia-associated VOCs. Within the clinical cohort, three previously proposed breath markers of oxidative stress, hexane, octane, and decane had no real diagnostic value in discriminating patients exposed to hyperoxia. CONCLUSIONS: Hyperoxia exposure of alveolar epithelial cells did not result in an increase in identifiable VOCs, whilst VOCs previously linked to oxidative stress were not associated with oxygen exposure in a cohort of critically ill patients. These findings suggest that the pathophysiological origin of previously proposed breath markers of oxidative stress is more complex than just oxidative stress from hyperoxia at the lung epithelial cellular level.

7.
Diagnostics (Basel) ; 14(4)2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38396460

RESUMO

Serum biomarkers and lung ultrasound are important measures for prognostication and treatment allocation in patients with COVID-19. Currently, there is a paucity of studies investigating relationships between serum biomarkers and ultrasonographic biomarkers derived from lung ultrasound. This study aims to assess correlations between serum biomarkers and lung ultrasound findings. This study is a secondary analysis of four prospective observational studies in adult patients with COVID-19. Serum biomarkers included markers of epithelial injury, endothelial dysfunction and immune activation. The primary outcome was the correlation between biomarker concentrations and lung ultrasound score assessed with Pearson's (r) or Spearman's (rs) correlations. Forty-four patients (67 [41-88] years old, 25% female, 52% ICU patients) were included. GAS6 (rs = 0.39), CRP (rs = 0.42) and SP-D (rs = 0.36) were correlated with lung ultrasound scores. ANG-1 (rs = -0.39) was inversely correlated with lung ultrasound scores. No correlations were found between lung ultrasound score and several other serum biomarkers. In patients with COVID-19, several serum biomarkers of epithelial injury, endothelial dysfunction and immune activation correlated with lung ultrasound findings. The lack of correlations with certain biomarkers could offer opportunities for precise prognostication and targeted therapeutic interventions by integrating these unlinked biomarkers.

8.
Am J Respir Cell Mol Biol ; 70(5): 392-399, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38315815

RESUMO

Severe viral lower respiratory tract infection (LRTI), resulting in both acute and long-term pulmonary disease, constitutes a substantial burden among young children. Viral LRTI triggers local oxidative stress pathways by infection and inflammation, and supportive care in the pediatric intensive care unit may further aggravate oxidative injury. The main goal of this exploratory study was to identify and monitor breath markers linked to oxidative stress in children over the disease course of severe viral LRTI. Exhaled breath was sampled during invasive ventilation, and volatile organic compounds (VOCs) were analyzed using gas chromatography and mass spectrometry. VOCs were selected in an untargeted principal component analysis and assessed for change over time. In addition, identified VOCs were correlated with clinical parameters. Seventy breath samples from 21 patients were analyzed. A total of 15 VOCs were identified that contributed the most to the explained variance of breath markers. Of these 15 VOCs, 10 were previously linked to pathways of oxidative stress. Eight VOCs, including seven alkanes and methyl alkanes, significantly decreased from the initial phase of ventilation to the day of extubation. No correlation was observed with the administered oxygen dose, whereas six VOCs showed a poor to strong positive correlation with driving pressure. In this prospective study of children with severe viral LRTI, the majority of VOCs that were most important for the explained variance mirrored clinical improvement. These breath markers could potentially help monitor the pulmonary oxidative status in these patients, but further research with other objective measures of pulmonary injury is required.


Assuntos
Biomarcadores , Testes Respiratórios , Estresse Oxidativo , Infecções Respiratórias , Compostos Orgânicos Voláteis , Humanos , Masculino , Testes Respiratórios/métodos , Feminino , Pré-Escolar , Biomarcadores/metabolismo , Lactente , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/análise , Infecções Respiratórias/virologia , Infecções Respiratórias/metabolismo , Criança , Estudos Prospectivos
9.
Am J Respir Crit Care Med ; 209(7): 805-815, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38190719

RESUMO

Rationale: Two molecular phenotypes of sepsis and acute respiratory distress syndrome, termed hyperinflammatory and hypoinflammatory, have been consistently identified by latent class analysis in numerous cohorts, with widely divergent clinical outcomes and differential responses to some treatments; however, the key biological differences between these phenotypes remain poorly understood.Objectives: We used host and microbe metagenomic sequencing data from blood to deepen our understanding of biological differences between latent class analysis-derived phenotypes and to assess concordance between the latent class analysis-derived phenotypes and phenotypes reported by other investigative groups (e.g., Sepsis Response Signature [SRS1-2], molecular diagnosis and risk stratification of sepsis [MARS1-4], reactive and uninflamed).Methods: We analyzed data from 113 patients with hypoinflammatory sepsis and 76 patients with hyperinflammatory sepsis enrolled in a two-hospital prospective cohort study. Molecular phenotypes had been previously assigned using latent class analysis.Measurements and Main Results: The hyperinflammatory and hypoinflammatory phenotypes of sepsis had distinct gene expression signatures, with 5,755 genes (31%) differentially expressed. The hyperinflammatory phenotype was associated with elevated expression of innate immune response genes, whereas the hypoinflammatory phenotype was associated with elevated expression of adaptive immune response genes and, notably, T cell response genes. Plasma metagenomic analysis identified differences in prevalence of bacteremia, bacterial DNA abundance, and composition between the phenotypes, with an increased presence and abundance of Enterobacteriaceae in the hyperinflammatory phenotype. Significant overlap was observed between these phenotypes and previously identified transcriptional subtypes of acute respiratory distress syndrome (reactive and uninflamed) and sepsis (SRS1-2). Analysis of data from the VANISH trial indicated that corticosteroids might have a detrimental effect in patients with the hypoinflammatory phenotype.Conclusions: The hyperinflammatory and hypoinflammatory phenotypes have distinct transcriptional and metagenomic features that could be leveraged for precision treatment strategies.


Assuntos
Síndrome do Desconforto Respiratório , Sepse , Humanos , Estudos Prospectivos , Estado Terminal , Fenótipo , Sepse/genética , Sepse/complicações , Síndrome do Desconforto Respiratório/complicações
11.
Am J Respir Crit Care Med ; 209(4): 402-416, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948687

RESUMO

Rationale: Lymphopenia in coronavirus disease (COVID-19) is associated with increased mortality. Objectives: To explore the association between lymphopenia, host response aberrations, and mortality in patients with lymphopenic COVID-19. Methods: We determined 43 plasma biomarkers reflective of four pathophysiological domains: endothelial cell and coagulation activation, inflammation and organ damage, cytokine release, and chemokine release. We explored if decreased concentrations of lymphocyte-derived proteins in patients with lymphopenia were associated with an increase in mortality. We sought to identify host response phenotypes in patients with lymphopenia by cluster analysis of plasma biomarkers. Measurements and Main Results: A total of 439 general ward patients with COVID-19 were stratified by baseline lymphocyte counts: normal (>1.0 × 109/L; n = 167), mild lymphopenia (>0.5 to ⩽1.0 × 109/L; n = 194), and severe lymphopenia (⩽0.5 × 109/L; n = 78). Lymphopenia was associated with alterations in each host response domain. Lymphopenia was associated with increased mortality. Moreover, in patients with lymphopenia (n = 272), decreased concentrations of several lymphocyte-derived proteins (e.g., CCL5, IL-4, IL-13, IL-17A) were associated with an increase in mortality (at P < 0.01 or stronger significance levels). A cluster analysis revealed three host response phenotypes in patients with lymphopenia: "hyporesponsive" (23.2%), "hypercytokinemic" (36.4%), and "inflammatory-injurious" (40.4%), with substantially differing mortality rates of 9.5%, 5.1%, and 26.4%, respectively. A 10-biomarker model accurately predicted these host response phenotypes in an external cohort with similar mortality distribution. The inflammatory-injurious phenotype showed a remarkable combination of relatively high inflammation and organ damage markers with high antiinflammatory cytokine levels yet low proinflammatory cytokine levels. Conclusions: Lymphopenia in COVID-19 signifies a heterogenous group of patients with distinct host response features. Specific host responses contribute to lymphopenia-associated mortality in COVID-19, including reduced CCL5 levels.


Assuntos
Anemia , COVID-19 , Linfopenia , Humanos , COVID-19/complicações , SARS-CoV-2 , Linfopenia/complicações , Citocinas , Inflamação/complicações , Biomarcadores , Anemia/complicações
13.
Am J Physiol Lung Cell Mol Physiol ; 326(1): L7-L18, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37933449

RESUMO

COVID-19-related acute respiratory distress syndrome (ARDS) can lead to long-term pulmonary fibrotic lesions. Alveolar fibroproliferative response (FPR) is a key factor in the development of pulmonary fibrosis. N-terminal peptide of procollagen III (NT-PCP-III) is a validated biomarker for activated FPR in ARDS. This study aimed to assess the association between dynamic changes in alveolar FPR and long-term outcomes, as well as mortality in COVID-19 ARDS patients. We conducted a prospective cohort study of 154 COVID-19 ARDS patients. We collected bronchoalveolar lavage (BAL) and blood samples for measurement of 17 pulmonary fibrosis biomarkers, including NT-PCP-III. We assessed pulmonary function and chest computed tomography (CT) at 3 and 12 mo after hospital discharge. We performed joint modeling to assess the association between longitudinal changes in biomarker levels and mortality at day 90 after starting mechanical ventilation. 154 patients with 284 BAL samples were analyzed. Of all patients, 40% survived to day 90, of whom 54 completed the follow-up procedure. A longitudinal increase in NT-PCP-III was associated with increased mortality (HR 2.89, 95% CI: 2.55-3.28; P < 0.001). Forced vital capacity and diffusion for carbon monoxide were impaired at 3 mo but improved significantly at one year after hospital discharge (P = 0.03 and P = 0.004, respectively). There was no strong evidence linking alveolar FPR during hospitalization and signs of pulmonary fibrosis in pulmonary function or chest CT images during 1-yr follow-up. In COVID-19 ARDS patients, alveolar FPR during hospitalization was associated with higher mortality but not with the presence of long-term fibrotic lung sequelae within survivors.NEW & NOTEWORTHY This is the first prospective study on the longitudinal alveolar fibroproliferative response in COVID-19 ARDS and its relationship with mortality and long-term follow-up. We used the largest cohort of COVID-19 ARDS patients who had consecutive bronchoalveolar lavages and measured 17 pulmonary fibroproliferative biomarkers. We found that a higher fibroproliferative response during admission was associated with increased mortality, but not correlated with long-term fibrotic lung sequelae in survivors.


Assuntos
COVID-19 , Fibrose Pulmonar , Síndrome do Desconforto Respiratório , Humanos , Fibrose Pulmonar/complicações , Estudos Prospectivos , Seguimentos , Líquido da Lavagem Broncoalveolar , COVID-19/complicações , Síndrome do Desconforto Respiratório/patologia , Biomarcadores
14.
Intensive Care Med ; 49(11): 1360-1369, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37851064

RESUMO

PURPOSE: The heterogeneity in sepsis is held responsible, in part, for the lack of precision treatment. Many attempts to identify subtypes of sepsis patients identify those with shared underlying biology or outcomes. To date, though, there has been limited effort to determine overlap across these previously identified subtypes. We aimed to determine the concordance of critically ill patients with sepsis classified by four previously described subtype strategies. METHODS: This secondary analysis of a multicenter prospective observational study included 522 critically ill patients with sepsis assigned to four previously established subtype strategies, primarily based on: (i) clinical data in the electronic health record (α, ß, γ, and δ), (ii) biomarker data (hyper- and hypoinflammatory), and (iii-iv) transcriptomic data (Mars1-Mars4 and SRS1-SRS2). Concordance was studied between different subtype labels, clinical characteristics, biological host response aberrations, as well as combinations of subtypes by sepsis ensembles. RESULTS: All four subtype labels could be adjudicated in this cohort, with the distribution of the clinical subtype varying most from the original cohort. The most common subtypes in each of the four strategies were γ (61%), which is higher compared to the original classification, hypoinflammatory (60%), Mars2 (35%), and SRS2 (54%). There was no clear relationship between any of the subtyping approaches (Cramer's V = 0.086-0.456). Mars2 and SRS1 were most alike in terms of host response biomarkers (p = 0.079-0.424), while other subtype strategies showed no clear relationship. Patients enriched for multiple subtypes revealed that characteristics and outcomes differ dependent on the combination of subtypes made. CONCLUSION: Among critically ill patients with sepsis, subtype strategies using clinical, biomarker, and transcriptomic data do not identify comparable patient populations and are likely to reflect disparate clinical characteristics and underlying biology.


Assuntos
Estado Terminal , Sepse , Humanos , Biomarcadores , Perfilação da Expressão Gênica , Sepse/genética , Estudos Prospectivos
16.
Ultrasound J ; 15(1): 40, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37782370

RESUMO

BACKGROUND: Lung ultrasound (LUS) can detect pulmonary edema and it is under consideration to be added to updated acute respiratory distress syndrome (ARDS) criteria. However, it remains uncertain whether different LUS scores can be used to quantify pulmonary edema in patient with ARDS. OBJECTIVES: This study examined the diagnostic accuracy of four LUS scores with the extravascular lung water index (EVLWi) assessed by transpulmonary thermodilution in patients with moderate-to-severe COVID-19 ARDS. METHODS: In this predefined secondary analysis of a multicenter randomized-controlled trial (InventCOVID), patients were enrolled within 48 hours after intubation and underwent LUS and EVLWi measurement on the first and fourth day after enrolment. EVLWi and ∆EVLWi were used as reference standards. Two 12-region scores (global LUS and LUS-ARDS), an 8-region anterior-lateral score and a 4-region B-line score were used as index tests. Pearson correlation was performed and the area under the receiver operating characteristics curve (AUROCC) for severe pulmonary edema (EVLWi > 15 mL/kg) was calculated. RESULTS: 26 out of 30 patients (87%) had complete LUS and EVLWi measurements at time point 1 and 24 out of 29 patients (83%) at time point 2. The global LUS (r = 0.54), LUS-ARDS (r = 0.58) and anterior-lateral score (r = 0.54) correlated significantly with EVLWi, while the B-line score did not (r = 0.32). ∆global LUS (r = 0.49) and ∆anterior-lateral LUS (r = 0.52) correlated significantly with ∆EVLWi. AUROCC for EVLWi > 15 ml/kg was 0.73 for the global LUS, 0.79 for the anterior-lateral and 0.85 for the LUS-ARDS score. CONCLUSIONS: Overall, LUS demonstrated an acceptable diagnostic accuracy for detection of pulmonary edema in moderate-to-severe COVID-19 ARDS when compared with PICCO. For identifying patients at risk of severe pulmonary edema, an extended score considering pleural morphology may be of added value. TRIAL REGISTRATION: ClinicalTrials.gov identifier NCT04794088, registered on 11 March 2021. European Clinical Trials Database number 2020-005447-23.

17.
ERJ Open Res ; 9(5)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37850212

RESUMO

Background: The concentration of exhaled octane has been postulated as a reliable biomarker for acute respiratory distress syndrome (ARDS) using metabolomics analysis with gas chromatography and mass spectrometry (GC-MS). A point-of-care (POC) breath test was developed in recent years to accurately measure octane at the bedside. The aim of the present study was to validate the diagnostic accuracy of exhaled octane for ARDS using a POC breath test in invasively ventilated intensive care unit (ICU) patients. Methods: This was an observational cohort study of consecutive patients receiving invasive ventilation for at least 24 h, recruited in two university ICUs. GC-MS and POC breath tests were used to quantify the exhaled octane concentration. ARDS was assessed by three experts following the Berlin definition and used as the reference standard. The area under the receiver operating characteristic curve (AUC) was used to assess diagnostic accuracy. Results: 519 patients were included and 190 (37%) fulfilled the criteria for ARDS. The median (interquartile range) concentration of octane using the POC breath test was not significantly different between patients with ARDS (0.14 (0.05-0.37) ppb) and without ARDS (0.11 (0.06-0.26) ppb; p=0.64). The AUC for ARDS based on the octane concentration in exhaled breath using the POC breath test was 0.52 (95% CI 0.46-0.57). Analysis of exhaled octane with GC-MS showed similar results. Conclusions: Octane in exhaled breath has insufficient diagnostic accuracy for ARDS. This disqualifies the use of octane as a biomarker in the diagnosis of ARDS and challenges most of the research performed up to now in the field of exhaled breath metabolomics.

18.
Biomedicines ; 11(10)2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37893050

RESUMO

BACKGROUND: Ventilator-associated pneumonia (VAP) is a severe condition. Early and adequate antibiotic treatment is the most important strategy for improving prognosis. Pancreatic Stone Protein (PSP) has been described as a biomarker that increases values 3-4 days before the clinical diagnosis of nosocomial sepsis in different clinical settings. We hypothesized that serial measures of PSP and its kinetics allow for an early diagnosis of VAP. METHODS: The BioVAP study was a prospective observational study designed to evaluate the role of biomarker dynamics in the diagnosis of VAP. To determine the association between repeatedly measured PSP and the risk of VAP, we used joint models for longitudinal and time-to-event data. RESULTS: Of 209 patients, 43 (20.6%) patients developed VAP, with a median time of 4 days. Multivariate joint models with PSP, CRP, and PCT did not show an association between biomarkers and VAP for the daily absolute value, with a hazard ratio (HR) for PSP of 1.01 (95% credible interval: 0.97 to 1.05), for CRP of 1.00 (0.83 to 1.22), and for PCT of 0.95 (0.82 to 1.08). The daily change of biomarkers provided similar results, with an HR for PSP of 1.15 (0.94 to 1.41), for CRP of 0.76 (0.35 to 1.58), and for PCT of 0.77 (0.40 to 1.45). CONCLUSION: Neither absolute PSP values nor PSP kinetics alone nor in combination with other biomarkers were useful in improving the prediction diagnosis accuracy in patients with VAP. CLINICAL TRIAL REGISTRATION: Registered retrospectively on August 3rd, 2012. NCT02078999.

19.
Thromb Res ; 229: 187-197, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37541167

RESUMO

BACKGROUND: Thrombocytopenia is associated with increased mortality in COVID-19 patients. OBJECTIVE: To determine the association between thrombocytopenia and alterations in host response pathways implicated in disease pathogenesis in patients with severe COVID-19. PATIENTS/METHODS: We studied COVID-19 patients admitted to a general hospital ward included in a national (CovidPredict) cohort derived from 13 hospitals in the Netherlands. In a subgroup, 43 host response biomarkers providing insight in aberrations in distinct pathophysiological domains (coagulation and endothelial cell function; inflammation and damage; cytokines and chemokines) were determined in plasma obtained at a single time point within 48 h after admission. Patients were stratified in those with normal platelet counts (150-400 × 109/L) and those with thrombocytopenia (<150 × 109/L). RESULTS: 6.864 patients were enrolled in the national cohort, of whom 1.348 had thrombocytopenia and 5.516 had normal platelets counts; the biomarker cohort consisted of 429 patients, of whom 85 with thrombocytopenia and 344 with normal platelet counts. Plasma D-dimer levels were not different in thrombocytopenia, although patients with moderate-severe thrombocytopenia (<100 × 109/L) showed higher D-dimer levels, indicating enhanced coagulation activation. Patients with thrombocytopenia had lower plasma levels of many proinflammatory cytokines and chemokines, and antiviral mediators, suggesting involvement of platelets in inflammation and antiviral immunity. Thrombocytopenia was associated with alterations in endothelial cell biomarkers indicative of enhanced activation and a relatively preserved glycocalyx integrity. CONCLUSION: Thrombocytopenia in hospitalized patients with severe COVID-19 is associated with broad host response changes across several pathophysiological domains. These results suggest a role of platelets in the immune response during severe COVID-19.


Assuntos
Anemia , COVID-19 , Trombocitopenia , Humanos , COVID-19/complicações , Anemia/complicações , Biomarcadores , Inflamação/complicações , Citocinas
20.
Intensive Care Med Exp ; 11(1): 42, 2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37442844

RESUMO

INTRODUCTION: The driving pressure (ΔP) has an independent association with outcome in patients with acute respiratory distress syndrome (ARDS). INTELLiVENT-Adaptive Support Ventilation (ASV) is a closed-loop mode of ventilation that targets the lowest work and force of breathing. AIM: To compare transpulmonary and respiratory system ΔP between closed-loop ventilation and conventional pressure controlled ventilation in patients with moderate-to-severe ARDS. METHODS: Single-center randomized cross-over clinical trial in patients in the early phase of ARDS. Patients were randomly assigned to start with a 4-h period of closed-loop ventilation or conventional ventilation, after which the alternate ventilation mode was selected. The primary outcome was the transpulmonary ΔP; secondary outcomes included respiratory system ΔP, and other key parameters of ventilation. RESULTS: Thirteen patients were included, and all had fully analyzable data sets. Compared to conventional ventilation, with closed-loop ventilation the median transpulmonary ΔP with was lower (7.0 [5.0-10.0] vs. 10.0 [8.0-11.0] cmH2O, mean difference - 2.5 [95% CI - 2.6 to - 2.1] cmH2O; P = 0.0001). Inspiratory transpulmonary pressure and the respiratory rate were also lower. Tidal volume, however, was higher with closed-loop ventilation, but stayed below generally accepted safety cutoffs in the majority of patients. CONCLUSIONS: In this small physiological study, when compared to conventional pressure controlled ventilation INTELLiVENT-ASV reduced the transpulmonary ΔP in patients in the early phase of moderate-to-severe ARDS. This closed-loop ventilation mode also led to a lower inspiratory transpulmonary pressure and a lower respiratory rate, thereby reducing the intensity of ventilation. Trial registration Clinicaltrials.gov, NCT03211494, July 7, 2017. https://clinicaltrials.gov/ct2/show/NCT03211494?term=airdrop&draw=2&rank=1 .

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...