Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Nurs Rep ; 14(1): 586-602, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38535717

RESUMO

BACKGROUND: Nutritional assessment on admission of critical patients is of vital importance to determine critical patients in whom there is a risk of malnutrition. Currently, it has been detected in most of the patients admitted to the Intensive Care Unit (ICU) that 60% of the daily calories are not achieved. Nurses play an essential role in the comprehensive assessment of the patient, including the nutritional area; however, significant deficits have been detected in some knowledge regarding Enteral Nutrition (EN). OBJECTIVE: We aim to determine the level of knowledge of nurses in the nutritional assessment of critically ill patients. METHODOLOGY: A systematic review of the scientific literature was conducted using the PRISMA statement. Between January 2017 and February 2023, articles were rescued from the electronic databases "Pubmed", "Scopus" and "The Cochrane Library", which analyzed the level of knowledge of ICU nurses regarding nutritional assessment. RESULTS: Most of the results found showed that nurses had deficient levels of knowledge in relation to nutritional assessment and practices. Interventions related to nutritional assessment were scarce, in contrast to those associated with the management of Nasogastric Tube (NGT) or patient positioning. CONCLUSIONS: The level of knowledge described was low or inadequate in relation to the care associated with the nutritional assessment of critically ill patients. The use of scales to assess the risk of malnutrition was not reported. This study was prospectively registered at PROSPERO on 25/10/2023 (insert date) with registration number CRD: 42023426924.

2.
Bioengineering (Basel) ; 11(2)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38391638

RESUMO

INTRODUCTION: Rehabilitation can improve outcomes after reverse shoulder arthroplasty (RSA). However, low adherence to rehabilitation and compliance rates are some of the main barriers. To address this public health issue, the goal of this research was to pilot test and evaluate the effectiveness of a chatbot to promote adherence to home rehabilitation in patients undergoing RSA. METHODS: A randomized pilot trial including patients undergoing RSA and early postoperative rehabilitation was performed. The control group received standard home rehabilitation; the experimental group received the same intervention supervised with a chatbot, with automated interactions that included messages to inform, motivate, and remember the days and exercises for 12 weeks. Compliance with rehabilitation and clinical measures of shoulder function, pain, and quality of life were assessed. RESULTS: 31 patients (17 experimental) with an average age of 70.4 (3.6) completed the intervention. Compliance was higher in the experimental group (77% vs. 65%; OR95% = 2.4 (0.5 to 11.4)). Statistically significant between-group differences with a CI of 95% were found in the QuickDASH questionnaire and self-reported quality of life. No differences were found in the rest of the measures. CONCLUSIONS: This pilot study suggests that the chatbot tool can be useful in promoting compliance with early postoperative home rehabilitation in patients undergoing RSA. Future randomized trials with adequate power are warranted to determine the clinical impact of the proposal.

3.
BMJ Open ; 14(1): e074949, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38176875

RESUMO

INTRODUCTION: Rotator cuff calcific tendinopathy (RCCT) involves calcific deposits in the rotator cuff. Non-surgical interventions such as extracorporeal shockwave therapy (ESWT) and ultrasound-guided percutaneous irrigation of calcific tendinopathy (US-PICT) are recommended for its early management. Exercise therapy (ET) has shown to be an effective intervention for people with rotator cuff tendinopathy, but it has not been formally tested in RCCT. The main objective of this study is to compare the effectiveness of an ET programme with ESWT and US-PICT in people with RCCT. As a secondary aim, this study aims to describe the natural history of RCCT. METHODS AND ANALYSIS: A randomised, single-blinded four-group clinical trial will be conducted. Adults from 30 to 75 years diagnosed with RCCT who accomplish eligibility criteria will be recruited. Participants (n=116) will be randomised into four groups: ET group will receive a 12-week rehabilitation programme; ESWT group will receive four sessions with 1 week rest between sessions during 1 month; US-PICT group will receive two sessions with 3 months of rest between sessions; and (actual) wait-and-see group will not receive any intervention during the 12-month follow-up. The primary outcome will be shoulder pain assessed with the Shoulder Pain and Disability Index at baseline, 2 weeks, 4 months, 6 months and 12 months from baseline. The primary analysis will be performed at 12 months from baseline. Secondary outcomes will include pain, range of motion, patient satisfaction and imaging-related variables. Moreover, the following psychosocial questionnaires with their corresponding outcome measure will be assessed: Central Sensitization Inventory (symptoms related to central sensitization); Pain Catastrophizing Scale (pain catastrophizing); Tampa Scale for Kinesiophobia 11 items (fear of movement); Fear Avoidance Belief Questionnaire (fear avoidance behaviour); Hospital Anxiety and Depression Scale (anxiety and depression); Pittsburgh Sleep Quality Index (sleep quality); and the EuroQol-5D (quality of life). An intention-to-treat analysis will be performed to reduce the risk of bias using a worst-case and best-case scenario analysis. ETHICS AND DISSEMINATION: Ethics committee approval for this study has been obtained (reference number: 1718862). The results of the main trial will be submitted for publication in a peer-reviewed journal. TRIAL REGISTRATION NUMBER: NCT05478902.


Assuntos
Tratamento por Ondas de Choque Extracorpóreas , Tendinopatia , Adulto , Humanos , Manguito Rotador/diagnóstico por imagem , Dor de Ombro/etiologia , Dor de Ombro/terapia , Qualidade de Vida , Tendinopatia/terapia , Tendinopatia/complicações , Tratamento por Ondas de Choque Extracorpóreas/métodos , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto
4.
Metabolism ; 152: 155765, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38142958

RESUMO

BACKGROUND AND AIM: The excessive accumulation of lipid droplets (LDs) is a defining characteristic of nonalcoholic fatty liver disease (NAFLD). The interaction between LDs and mitochondria is functionally important for lipid metabolism homeostasis. Exercise improves NAFLD, but it is not known if it has an effect on hepatic LD-mitochondria interactions. Here, we investigated the influence of exercise on LD-mitochondria interactions and its significance in the context of NAFLD. APPROACH AND RESULTS: Mice were fed high-fat diet (HFD) or HFD-0.1 % methionine and choline-deficient diet (MCD) to emulate simple hepatic steatosis or non-alcoholic steatohepatitis, respectively. In both models, aerobic exercise decreased the size of LDs bound to mitochondria and the number of LD-mitochondria contacts. Analysis showed that the effects of exercise on HOMA-IR and liver triglyceride levels were independent of changes in body weight, and a positive correlation was observed between the number of LD-mitochondria contacts and NAFLD severity and with the lipid droplet size bound to mitochondria. Cellular fractionation studies revealed that ATP-coupled respiration and fatty acid oxidation (FAO) were greater in hepatic peridroplet mitochondria (PDM) from HFD-fed exercised mice than from equivalent sedentary mice. Finally, exercise increased FAO and mitofusin-2 abundance exclusively in PDM through a mechanism involving the curvature of mitochondrial membranes and the abundance of saturated lipids. Accordingly, hepatic mitofusin-2 ablation prevented exercise-induced FAO in PDM. CONCLUSIONS: This study demonstrates that aerobic exercise has beneficial effects in murine NAFLD models by lessening the interactions between hepatic LDs and mitochondria, and by decreasing LD size, correlating with a reduced severity of NAFLD. Additionally, aerobic exercise increases FAO in PDM and this process is reliant on Mfn-2 enrichment, which modifies LD-mitochondria communication.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Masculino , Camundongos , Dieta Hiperlipídica , Ácidos Graxos/metabolismo , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo
5.
J Cell Biol ; 222(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37526691

RESUMO

Caveolin-1 (CAV1) and CAV3 are membrane-sculpting proteins driving the formation of the plasma membrane (PM) caveolae. Within the PM mosaic environment, caveola assembly is unique as it requires progressive oligomerization of newly synthesized caveolins while trafficking through the biosynthetic-secretory pathway. Here, we have investigated these early events by combining structural, biochemical, and microscopy studies. We uncover striking trafficking differences between caveolins, with CAV1 rapidly exported to the Golgi and PM while CAV3 is initially retained in the endoplasmic reticulum and laterally moves into lipid droplets. The levels of caveolins in the endoplasmic reticulum are controlled by proteasomal degradation, and only monomeric/low oligomeric caveolins are exported into the cis-Golgi with higher-order oligomers assembling beyond this compartment. When any of those early proteostatic mechanisms are compromised, chemically or genetically, caveolins tend to accumulate along the secretory pathway forming non-functional aggregates, causing organelle damage and triggering cellular stress. Accordingly, we propose a model in which disrupted proteostasis of newly synthesized caveolins contributes to pathogenesis.


Assuntos
Caveolinas , Proteostase , Caveolinas/metabolismo , Caveolina 1/metabolismo , Proteínas de Membrana/metabolismo , Cavéolas/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo
6.
Immunol Rev ; 317(1): 113-136, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36960679

RESUMO

Microbes have developed many strategies to subvert host organisms, which, in turn, evolved several innate immune responses. As major lipid storage organelles of eukaryotes, lipid droplets (LDs) are an attractive source of nutrients for invaders. Intracellular viruses, bacteria, and protozoan parasites induce and physically interact with LDs, and the current view is that they "hijack" LDs to draw on substrates for host colonization. This dogma has been challenged by the recent demonstration that LDs are endowed with a protein-mediated antibiotic activity, which is upregulated in response to danger signals and sepsis. Dependence on host nutrients could be a generic "Achilles' heel" of intracellular pathogens and LDs a suitable chokepoint harnessed by innate immunity to organize a front-line defense. Here, we will provide a brief overview of the state of the conflict and discuss potential mechanisms driving the formation of the 'defensive-LDs' functioning as hubs of innate immunity.


Assuntos
Anti-Infecciosos , Gotículas Lipídicas , Humanos , Gotículas Lipídicas/metabolismo , Organelas , Bactérias , Imunidade Inata , Anti-Infecciosos/metabolismo , Metabolismo dos Lipídeos
7.
Front Cell Dev Biol ; 10: 901321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35756995

RESUMO

Lipid droplets (LDs) are spherical, single sheet phospholipid-bound organelles that store neutral lipids in all eukaryotes and some prokaryotes. Initially conceived as relatively inert depots for energy and lipid precursors, these highly dynamic structures play active roles in homeostatic functions beyond metabolism, such as proteostasis and protein turnover, innate immunity and defense. A major share of the knowledge behind this paradigm shift has been enabled by the use of systematic molecular profiling approaches, capable of revealing and describing these non-intuitive systems-level relationships. Here, we discuss these advances and some of the challenges they entail, and highlight standing questions in the field.

8.
Trends Endocrinol Metab ; 33(3): 218-229, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35065875

RESUMO

As major eukaryotic lipid storage organelles, lipid droplets (LDs) are metabolic hubs coordinating energy flux and building block distribution. Infectious pathogens often promote accumulation and physically interact with LDs. The most accepted view is that host LDs are hijacked by invaders to draw on nutrients for host colonisation. However, unique traits such as biogenesis plasticity, dynamic proteome, signalling capacity, and ability to interact with other organelles endow LDs with competencies to face complex biological challenges. Here, we focus on published data suggesting that LDs are not usurped organelles but innate immunity first responders. By comparison with analogous mechanisms activated on LDs in nutrient-poor environments, our review supports the hypothesis that host LDs actively participate in immunometabolism, immune signalling, and microbial killing.


Assuntos
Socorristas , Gotículas Lipídicas , Eucariotos , Humanos , Gotículas Lipídicas/metabolismo , Metabolismo dos Lipídeos , Transdução de Sinais
9.
Oncogene ; 40(38): 5730-5740, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34333552

RESUMO

Oncogenic mutations of KRAS are found in the most aggressive human tumors, including colorectal cancer. It has been suggested that oncogenic KRAS phosphorylation at Ser181 modulates its activity and favors cell transformation. Using nonphosphorylatable (S181A), phosphomimetic (S181D), and phospho-/dephosphorylatable (S181) oncogenic KRAS mutants, we analyzed the role of this phosphorylation to the maintenance of tumorigenic properties of colorectal cancer cells. Our data show that the presence of phospho-/dephosphorylatable oncogenic KRAS is required for preserving the epithelial organization of colorectal cancer cells in 3D cultures, and for supporting subcutaneous tumor growth in mice. Interestingly, gene expression differed according to the phosphorylation status of KRAS. In DLD-1 cells, CTNNA1 was only expressed in phospho-/dephosphorylatable oncogenic KRAS-expressing cells, correlating with cell polarization. Moreover, lack of oncogenic KRAS phosphorylation leads to changes in expression of genes related to cell invasion, such as SERPINE1, PRSS1,2,3, and NEO1, and expression of phosphomimetic oncogenic KRAS resulted in diminished expression of genes involved in enterocyte differentiation, such as HNF4G. Finally, the analysis, in a public data set of human colorectal cancer, of the gene expression signatures associated with phosphomimetic and nonphosphorylatable oncogenic KRAS suggests that this post-translational modification regulates tumor progression in patients.


Assuntos
Neoplasias Colorretais/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Animais , Linhagem Celular Tumoral , Polaridade Celular , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Mutação , Transplante de Neoplasias , Proteínas do Tecido Nervoso/genética , Fosforilação , Inibidor 1 de Ativador de Plasminogênio/genética , Receptores de Superfície Celular/genética , Tripsina/genética , Tripsinogênio/genética
10.
J Cell Biol ; 220(8)2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34165498

RESUMO

In the ongoing conflict between eukaryotic cells and pathogens, lipid droplets (LDs) emerge as a choke point in the battle for nutrients. While many pathogens seek the lipids stored in LDs to fuel an expensive lifestyle, innate immunity rewires lipid metabolism and weaponizes LDs to defend cells and animals. Viruses, bacteria, and parasites directly and remotely manipulate LDs to obtain substrates for metabolic energy, replication compartments, assembly platforms, membrane blocks, and tools for host colonization and/or evasion such as anti-inflammatory mediators, lipoviroparticles, and even exosomes. Host LDs counterattack such advances by synthesizing bioactive lipids and toxic nucleotides, organizing immune signaling platforms, and recruiting a plethora of antimicrobial proteins to provide a front-line defense against the invader. Here, we review the current state of this conflict. We will discuss why, when, and how LDs efficiently coordinate and precisely execute a plethora of immune defenses. In the age of antimicrobial resistance and viral pandemics, understanding innate immune strategies developed by eukaryotic cells to fight and defeat dangerous microorganisms may inform future anti-infective strategies.


Assuntos
Bactérias/metabolismo , Metabolismo Energético , Imunidade Inata , Gotículas Lipídicas/metabolismo , Parasitos/metabolismo , Vírus/metabolismo , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Bactérias/imunologia , Bactérias/patogenicidade , Evolução Molecular , Interações Hospedeiro-Patógeno , Humanos , Gotículas Lipídicas/imunologia , Parasitos/imunologia , Parasitos/patogenicidade , Transdução de Sinais , Vírus/imunologia , Vírus/patogenicidade
11.
Clin Neurophysiol Pract ; 6: 164-167, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35112035

RESUMO

INTRODUCTION: Although pentavalent antimonials are no longer considered the first-line therapy for visceral leishmaniasis in the developed world, they are still used in certain geographical areas and in refractory cases. These drugs have a great number of adverse effects; however, neurological toxicity has been rarely reported. CASE REPORT: We present a 56-year-old woman who required long-term treatment with antimonial drugs due to refractory visceral leishmaniasis and presented clinically with tremor of extremities, myoclonus, gait disturbances and epileptic seizures. The EEG showed increased beta rhythms and generalized epileptogenic activity. She had a slow but favorable response after the withdrawal of antimonials and the initiation of anticonvulsant therapy. CONCLUSION: Severe but reversible neurological toxicity is a rare adverse effect of prolonged antimonial treatment. More EEG record data are needed to support the suspicion of a possible increase of beta rhythms in this situation.

12.
F1000Res ; 10: 263, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35169460

RESUMO

Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and together with mitochondria key regulators of cell bioenergetics. LDs communicate with mitochondria and other organelles forming "metabolic synapse" contacts to ensure that lipid supply occurs where and when necessary. Although transmission electron microscopy analysis allows an accurate and precise analysis of contacts, the characterization of a large number of cells and conditions can become a long-term process. In order to extend contact analysis to hundreds of cells and multiple conditions, we have combined confocal fluorescence microscopy with advanced image analysis methods. In this work, we have developed the ImageJ macro script ContactJ, a novel and straight image analysis method to identify and quantify contacts between LD and mitochondria in fluorescence microscopy images allowing the automatic analysis. This image analysis workflow combines colocalization and skeletonization methods, enabling the quantification of LD-mitochondria contacts together with a complete characterization of organelles and cellular parameters. The correlation and normalization of these parameters contribute to the complex description of cell behavior under different experimental energetic states. ContactJ is available here: https://github.com/UB-BioMedMicroscopy/ContactJ/tree/1.0.


Assuntos
Gotículas Lipídicas , Mitocôndrias , Gotículas Lipídicas/metabolismo , Lipídeos , Microscopia Confocal/métodos , Microscopia de Fluorescência
13.
J Clin Med ; 11(1)2021 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011895

RESUMO

The aim of this cross-sectional study was to explore the spatial extent of pain and its association with clinical symptoms, psychological features, and pain sensitization in people with frozen shoulder (FS). Forty-eight individuals with FS completed pain drawings (PDs) and reported their clinical symptoms including pain intensity (Visual Analogue Scale) and shoulder disability (Shoulder Pain and Disability Index). Moreover, pain sensitization measurements (pressure pain thresholds, temporal summation, conditioned pain modulation, and Central Sensitization Inventory (CSI)) were assessed. Psychological features were assessed by Pain Catastrophizing Scale (PCS) and Pain Vigilance and Awareness Questionnaire. Pain frequency maps were generated, Margolis rating scale was used for pain location, and Spearman correlation coefficients were computed. The mean (SD) pain extent was 12.5% (6.7%) and the most common painful area was the anterolateral shoulder region (100%). Women presented a more widespread pain distribution compared with men. Significant positive associations were obtained between pain extent and current pain intensity (rs = 0.421, p < 0.01), PCS (rs = 0.307, p < 0.05) and CSI (rs = 0.358, p < 0.05). The anterolateral region of the shoulder was the most common painful area in people with FS. Women with FS presented more extended areas of pain; and a more widespread distribution of pain was correlated with higher levels of pain, pain catastrophizing and pain sensitization.

14.
Am J Pathol ; 191(3): 475-486, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33345999

RESUMO

Niemann-Pick type C (NPC) disease is a lysosomal storage disorder characterized by cholesterol accumulation caused by loss-of-function mutations in the Npc1 gene. NPC disease primarily affects the brain, causing neuronal damage and affecting motor coordination. In addition, considerable liver malfunction in NPC disease is common. Recently, we found that the depletion of annexin A6 (ANXA6), which is most abundant in the liver and involved in cholesterol transport, ameliorated cholesterol accumulation in Npc1 mutant cells. To evaluate the potential contribution of ANXA6 in the progression of NPC disease, double-knockout mice (Npc1-/-/Anxa6-/-) were generated and examined for lifespan, neurologic and hepatic functions, as well as liver histology and ultrastructure. Interestingly, lack of ANXA6 in NPC1-deficient animals did not prevent the cerebellar degeneration phenotype, but further deteriorated their compromised hepatic functions and reduced their lifespan. Moreover, livers of Npc1-/-/Anxa6-/- mice contained a significantly elevated number of foam cells congesting the sinusoidal space, a feature commonly associated with inflammation. We hypothesize that ANXA6 deficiency in Npc1-/- mice not only does not reverse neurologic and motor dysfunction, but further worsens overall liver function, exacerbating hepatic failure in NPC disease.


Assuntos
Anexina A6/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Hepatopatias/patologia , Longevidade , Animais , Comportamento Animal , Hepatopatias/etiologia , Hepatopatias/metabolismo , Camundongos , Camundongos Knockout , Proteína C1 de Niemann-Pick
15.
Science ; 370(6514)2020 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-33060333

RESUMO

Lipid droplets (LDs) are the major lipid storage organelles of eukaryotic cells and a source of nutrients for intracellular pathogens. We demonstrate that mammalian LDs are endowed with a protein-mediated antimicrobial capacity, which is up-regulated by danger signals. In response to lipopolysaccharide (LPS), multiple host defense proteins, including interferon-inducible guanosine triphosphatases and the antimicrobial cathelicidin, assemble into complex clusters on LDs. LPS additionally promotes the physical and functional uncoupling of LDs from mitochondria, reducing fatty acid metabolism while increasing LD-bacterial contacts. Thus, LDs actively participate in mammalian innate immunity at two levels: They are both cell-autonomous organelles that organize and use immune proteins to kill intracellular pathogens as well as central players in the local and systemic metabolic adaptation to infection.


Assuntos
Bactérias/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Gotículas Lipídicas/imunologia , Animais , Peptídeos Catiônicos Antimicrobianos/metabolismo , Ácidos Graxos/metabolismo , GTP Fosfo-Hidrolases/metabolismo , Células HEK293 , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/imunologia , Catelicidinas
16.
Nat Commun ; 11(1): 3888, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753666

RESUMO

First proposed as antimicrobial agents, histones were later recognized for their role in condensing chromosomes. Histone antimicrobial activity has been reported in innate immune responses. However, how histones kill bacteria has remained elusive. The co-localization of histones with antimicrobial peptides (AMPs) in immune cells suggests that histones may be part of a larger antimicrobial mechanism in vivo. Here we report that histone H2A enters E. coli and S. aureus through membrane pores formed by the AMPs LL-37 and magainin-2. H2A enhances AMP-induced pores, depolarizes the bacterial membrane potential, and impairs membrane recovery. Inside the cytoplasm, H2A reorganizes bacterial chromosomal DNA and inhibits global transcription. Whereas bacteria recover from the pore-forming effects of LL-37, the concomitant effects of H2A and LL-37 are irrecoverable. Their combination constitutes a positive feedback loop that exponentially amplifies their antimicrobial activities, causing antimicrobial synergy. More generally, treatment with H2A and the pore-forming antibiotic polymyxin B completely eradicates bacterial growth.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/genética , Estruturas Cromossômicas/efeitos dos fármacos , Histonas/metabolismo , Prótons , Animais , Estruturas Cromossômicas/metabolismo , Cromossomos Bacterianos/metabolismo , DNA Bacteriano/metabolismo , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Imunidade Inata , Mamíferos , Polimixina B/farmacologia , Análise de Sequência de RNA , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/metabolismo
18.
J Cell Sci ; 133(9)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32393675

RESUMO

Caveolae are invaginations of the plasma membrane that are remarkably abundant in adipocytes, endothelial cells and muscle. Caveolae provide cells with resources for mechanoprotection, can undergo fission from the plasma membrane and can regulate a variety of signaling pathways. Caveolins are fundamental components of caveolae, but many cells, such as hepatocytes and many neurons, express caveolins without forming distinguishable caveolae. Thus, the function of caveolins goes beyond their roles as caveolar components. The membrane-organizing and -sculpting capacities of caveolins, in combination with their complex intracellular trafficking, might contribute to these additional roles. Furthermore, non-caveolar caveolins can potentially interact with proteins normally excluded from caveolae. Here, we revisit the non-canonical roles of caveolins in a variety of cellular contexts including liver, brain, lymphocytes, cilia and cancer cells, as well as consider insights from invertebrate systems. Non-caveolar caveolins can determine the intracellular fluxes of active lipids, including cholesterol and sphingolipids. Accordingly, caveolins directly or remotely control a plethora of lipid-dependent processes such as the endocytosis of specific cargoes, sorting and transport in endocytic compartments, or different signaling pathways. Indeed, loss-of-function of non-caveolar caveolins might contribute to the common phenotypes and pathologies of caveolin-deficient cells and animals.


Assuntos
Cavéolas , Cavernas , Animais , Caveolina 1 , Membrana Celular , Células Endoteliais
19.
Hepatology ; 72(6): 2149-2164, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32170749

RESUMO

BACKGROUND AND AIMS: Liver regeneration requires the organized and sequential activation of events that lead to restoration of hepatic mass. During this process, other vital liver functions need to be preserved, such as maintenance of blood glucose homeostasis, balancing the degradation of hepatic glycogen stores, and gluconeogenesis (GNG). Under metabolic stress, alanine is the main hepatic gluconeogenic substrate, and its availability is the rate-limiting step in this pathway. Na+ -coupled neutral amino acid transporters (SNATs) 2 and 4 are believed to facilitate hepatic alanine uptake. In previous studies, we demonstrated that a member of the Ca2+ -dependent phospholipid binding annexins, Annexin A6 (AnxA6), regulates membrane trafficking along endo- and exocytic pathways. Yet, although AnxA6 is abundantly expressed in the liver, its function in hepatic physiology remains unknown. In this study, we investigated the potential contribution of AnxA6 in liver regeneration. APPROACH AND RESULTS: Utilizing AnxA6 knockout mice (AnxA6-/- ), we challenged liver function after partial hepatectomy (PHx), inducing acute proliferative and metabolic stress. Biochemical and immunofluorescent approaches were used to dissect AnxA6-/- mice liver proliferation and energetic metabolism. Most strikingly, AnxA6-/- mice exhibited low survival after PHx. This was associated with an irreversible and progressive drop of blood glucose levels. Whereas exogenous glucose administration or restoration of hepatic AnxA6 expression rescued AnxA6-/- mice survival after PHx, the sustained hypoglycemia in partially hepatectomized AnxA6-/- mice was the consequence of an impaired alanine-dependent GNG in AnxA6-/- hepatocytes. Mechanistically, cytoplasmic SNAT4 failed to recycle to the sinusoidal plasma membrane of AnxA6-/- hepatocytes 48 hours after PHx, impairing alanine uptake and, consequently, glucose production. CONCLUSIONS: We conclude that the lack of AnxA6 compromises alanine-dependent GNG and liver regeneration in mice.


Assuntos
Anexina A6/metabolismo , Gluconeogênese/fisiologia , Regeneração Hepática/fisiologia , Animais , Anexina A6/genética , Membrana Celular/metabolismo , Modelos Animais de Doenças , Glucose/metabolismo , Glicólise/fisiologia , Hepatectomia , Hepatócitos/metabolismo , Humanos , Fígado/citologia , Fígado/metabolismo , Fígado/cirurgia , Masculino , Camundongos , Camundongos Knockout
20.
Semin Cell Dev Biol ; 108: 33-46, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32146030

RESUMO

The capacity of cells and animals to sense and adapt to fluctuations in the availability of energetic substrates is commonly described as metabolic flexibility. This flexibility allows for example the transition from fed to fasting states and to meet the energy demands of exercise in both states. Flexibility is disrupted in pathological conditions such as the metabolic syndrome but in contrast, it is enhanced in some tumours. Lipid droplets (LDs) and mitochondria are key organelles in bioenergetics. In all eukaryotic cells, LDs store and supply essential lipids to produce signalling molecules, membrane building blocks, and the metabolic energy needed to survive during nutrient poor periods. Highly conserved, robust, and regulated mechanisms ensure these bioenergetic fluxes. Although mitochondria are recognized as the epicentre of metabolic flexibility, the contribution of LDs and LD-proteins is often neglected or considered detrimental. Here, we revisit the key roles of LDs during fasting and the intimate collaboration existing with mitochondria when cells sense and respond to fluctuations in substrate availability.


Assuntos
Metabolismo Energético , Gotículas Lipídicas/metabolismo , Animais , Autofagia , Jejum , Humanos , Gotículas Lipídicas/ultraestrutura , Mitocôndrias/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...