Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 8(11)2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30388830

RESUMO

There is a growing interest in exploiting the functional properties of niobium oxides in general and of the T-Nb2O5 polymorph in particular. Fundamental investigations of the properties of niobium oxides are, however, hindered by the availability of materials with sufficient structural perfection. It is expected that high-quality T-Nb2O5 can be made using heteroepitaxial growth. Here, we investigated the epitaxial growth of T-Nb2O5 on a prototype perovskite oxide, SrTiO3. Even though there exists a reasonable lattice mismatch in one crystallographic direction, these materials have a significant difference in crystal structure: SrTiO3 is cubic, whereas T-Nb2O5 is orthorhombic. It is found that this difference in symmetry results in the formation of domains that have the T-Nb2O5 c-axis aligned with the SrTiO3 <001>s in-plane directions. Hence, the number of domain orientations is four and two for the growth on (100)s- and (110)s-oriented substrates, respectively. Interestingly, the out-of-plane growth direction remains the same for both substrate orientations, suggesting a weak interfacial coupling between the two materials. Despite challenges associated with the heteroepitaxial growth of T-Nb2O5, the T-Nb2O5 films presented in this paper are a significant improvement in terms of structural quality compared to their polycrystalline counterparts.

2.
Sci Rep ; 8(1): 5889, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29650968

RESUMO

Phase change materials such as pseudobinary GeTe-Sb2Te3 (GST) alloys are an essential part of existing and emerging technologies. Here, we investigate the electrical and optical properties of epitaxial phase change materials: α-GeTe, Ge2Sb2Te5 (GST225), and Sb2Te3. Temperature-dependent Hall measurements reveal a reduction of the hole concentration with increasing temperature in Sb2Te3 that is attributed to lattice expansion, resulting in a non-linear increase of the resistivity that is also observed in GST225. Fourier transform infrared spectroscopy at room temperature demonstrates the presence of electronic states within the energy gap for α-GeTe and GST225. We conclude that these electronic states are due to vacancy clusters inside these two materials. The obtained results shed new light on the fundamental properties of phase change materials such as the high dielectric constant and persistent photoconductivity and have the potential to be included in device simulations.

3.
Sci Rep ; 8(1): 5015, 2018 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-29556097

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

4.
Nanoscale ; 9(25): 8774-8780, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28621784

RESUMO

Phase-change materials based on GeSbTe show unique switchable optoelectronic properties and are an important contender for next-generation non-volatile memories. Moreover, they recently received considerable scientific interest, because it is found that a vacancy ordering process is responsible for both an electronic metal-insulator transition and a structural cubic-to-trigonal transition. GeTe-Sb2Te3 based superlattices, or specifically their interfaces, provide an interesting platform for the study of GeSbTe alloys. In this work such superlattices have been grown with molecular beam epitaxy and they have been characterized extensively with transmission electron microscopy and X-ray diffraction. It is shown that the van der Waals gaps in these superlattices, which result from vacancy ordering, are mobile and reconfigure through the film using bi-layer defects and Ge diffusion upon annealing. Moreover, it is shown that for an average composition that is close to GeSb2Te4 a large portion of 9-layered van der Waals systems is formed, suggesting that still a substantial amount of random vacancies must be present within the trigonal GeSbTe layers. Overall these results illuminate the structural organization of van der Waals gaps commonly encountered in GeSbTe alloys, which are intimately related to their electronic properties and the metal-insulator transition.

5.
Sci Rep ; 7(1): 1466, 2017 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-28469258

RESUMO

The present work displays a route to design strain gradients at the interface between substrate and van der Waals bonded materials. The latter are expected to grow decoupled from the substrates and fully relaxed and thus, by definition, incompatible with conventional strain engineering. By the usage of passivated vicinal surfaces we are able to insert strain at step edges of layered chalcogenides, as demonstrated by the tilt of the epilayer in the growth direction with respect of the substrate orientation. The interplay between classical and van der Waals epitaxy can be modulated with an accurate choice of the substrate miscut. High quality crystalline GexSb2Te3+x with almost Ge1Sb2Te4 composition and improved degree of ordering of the vacancy layers is thus obtained by epitaxial growth of layers on 3-4° stepped Si substrates. These results highlight that it is possible to build and control strain in van der Waals systems, therefore opening up new prospects for the functionalization of epilayers by directly employing vicinal substrates.

6.
Sci Rep ; 5: 18079, 2015 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-26658715

RESUMO

Van der Waals (vdW) epitaxy is an attractive method for the fabrication of vdW heterostructures. Here Sb2Te3 films grown on three different kind of graphene substrates (monolayer epitaxial graphene, quasi freestanding bilayer graphene and the SiC (6√3 × 6√3)R30° buffer layer) are used to study the vdW epitaxy between two 2-dimensionally (2D) bonded materials. It is shown that the Sb2Te3 /graphene interface is stable and that coincidence lattices are formed between the epilayers and substrate that depend on the size of the surface unit cell. This demonstrates that there is a significant, although relatively weak, interfacial interaction between the two materials. Lattice matching is thus relevant for vdW epitaxy with two 2D bonded materials and a fundamental design parameter for vdW heterostructures.

7.
Nanoscale ; 7(45): 19136-43, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26523888

RESUMO

GeTe-Sb2Te3 superlattices are nanostructured phase-change materials which are under intense investigation for non-volatile memory applications. They show superior properties compared to their bulk counterparts and significant efforts exist to explain the atomistic nature of their functionality. The present work sheds new light on the interface formation between GeTe and Sb2Te3, contradicting previously proposed models in the literature. For this purpose [GeTe(1 nm)-Sb2Te3(3 nm)]15 superlattices were grown on passivated Si(111) at 230 °C using molecular beam epitaxy and they have been characterized particularly with cross-sectional HAADF scanning transmission electron microscopy. Contrary to the previously proposed models, it is found that the ground state of the film actually consists of van der Waals bonded layers (i.e. a van der Waals heterostructure) of Sb2Te3 and rhombohedral GeSbTe. Moreover, it is shown by annealing the film at 400 °C, which reconfigures the superlattice into bulk rhombohedral GeSbTe, that this van der Waals layer is thermodynamically favored. These results are explained in terms of the bonding dimensionality of GeTe and Sb2Te3 and the strong tendency of these materials to intermix. The findings debate the previously proposed switching mechanisms of superlattice phase-change materials and give new insights in their possible memory application.

8.
Nano Lett ; 14(6): 3534-8, 2014 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-24810315

RESUMO

Sb2Te3 films are used for studying the epitaxial registry between two-dimensionally bonded (2D) materials and three-dimensional bonded (3D) substrates. In contrast to the growth of 3D materials, it is found that the formation of coincidence lattices between Sb2Te3 and Si(111) depends on the geometry and dangling bonds of the reconstructed substrate surface. Furthermore, we show that the epitaxial registry can be influenced by controlling the Si(111) surface reconstruction and confirm the results for ultrathin films.

9.
Nano Lett ; 12(5): 2386-90, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22468652

RESUMO

The technologically important exchange coupling in antiferromagnetic/ferromagnetic bilayers is investigated for embedded nanostructures defined in a LaFeO(3)/La(0.7)Sr(0.3)MnO(3) bilayer. Exploiting the element specificity of soft X-ray spectromicroscopy, we selectively probe the magnetic order in the two layers. A transition from perpendicular to parallel spin alignment is observed for these nanostructures, dependent on size and crystalline orientation. The results show that shape-induced anisotropy in the antiferromagnet can override the interface exchange coupling in spin-flop coupled nanostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA