Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Ecol Evol ; 7(12): 2037-2044, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37857892

RESUMO

South America is home to the highest freshwater fish biodiversity on Earth, and the hotspot of species richness is located in the western Amazon basin. The location of this hotspot is enigmatic, as it is inconsistent with the pattern observed in river systems across the world of increasing species richness towards a river's mouth. Here we investigate the role of river capture events caused by Andean mountain building and repeated episodes of flooding in western Amazonia in shaping the modern-day richness pattern of freshwater fishes in South America, and in Amazonia in particular. To this end, we combine a reconstruction of river networks since 80 Ma with a mechanistic model simulating dispersal, allopatric speciation and extinction over the dynamic landscape of rivers and lakes. We show that Andean mountain building and consequent numerous small river capture events in western Amazonia caused freshwater habitats to be highly dynamic, leading to high diversification rates and exceptional richness. The history of marine incursions and lakes, including the Miocene Pebas mega-wetland system in western Amazonia, played a secondary role.


Assuntos
Biodiversidade , Ecossistema , Animais , América do Sul , Lagos , Peixes
2.
Evolution ; 77(12): 2672-2686, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-37756495

RESUMO

Mountains are among the most biodiverse regions on the planet, and how these landforms shape diversification through the interaction of biological traits and geo-climatic dynamics is integral to understanding global biodiversity. In this study, we investigate the dual roles of climate change and mountain uplift on the evolution of a hyper-diverse radiation, Liolaemus lizards, with a spatially explicit model of diversification using a reconstruction of uplift and paleotemperature in central and southern South America. The diversification model captures a hotspot for Liolaemus around 40°S in lineages with low-dispersal ability and narrow niche breadths. Under the model, speciation rates are highest in low latitudes (<35°S) and mid elevations (~1,000 m), while extinction rates are highest at higher latitudes (>35°S) and higher elevations (>2,000 m). Temperature change through the Cenozoic explained variation in speciation and extinction rates through time and across different elevational bands. Our results point to the conditions of mid elevations being optimal for diversification (i.e., Goldilocks Zone), driven by the combination of (1) a complex topography that facilitates speciation during periods of climatic change, and (2) a relatively moderate climate that enables the persistence of ectothermic lineages and buffers species from extinction.


Assuntos
Lagartos , Animais , Lagartos/genética , Biodiversidade , América do Sul , Mudança Climática , Filogenia
3.
PLoS One ; 15(10): e0241000, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33079958

RESUMO

Intriguing latest Eocene land-faunal dispersals between South America and the Greater Antilles (northern Caribbean) has inspired the hypothesis of the GAARlandia (Greater Antilles Aves Ridge) land bridge. This landbridge, however, should have crossed the Caribbean oceanic plate, and the geological evolution of its rise and demise, or its geodynamic forcing, remain unknown. Here we present the results of a land-sea survey from the northeast Caribbean plate, combined with chronostratigraphic data, revealing a regional episode of mid to late Eocene, trench-normal, E-W shortening and crustal thickening by ∼25%. This shortening led to a regional late Eocene-early Oligocene hiatus in the sedimentary record revealing the location of an emerged land (the Greater Antilles-Northern Lesser Antilles, or GrANoLA, landmass), consistent with the GAARlandia hypothesis. Subsequent submergence is explained by combined trench-parallel extension and thermal relaxation following a shift of arc magmatism, expressed by a regional early Miocene transgression. We tentatively link the NE Caribbean intra-plate shortening to a well-known absolute and relative North American and Caribbean plate motion change, which may provide focus for the search of the remaining connection between 'GrANoLA' land and South America, through the Aves Ridge or Lesser Antilles island arc. Our study highlights the how regional geodynamic evolution may have driven paleogeographic change that is still reflected in current biology.


Assuntos
Fenômenos Geológicos , Animais , Região do Caribe , Foraminíferos , Porto Rico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA