Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 93(17): 6604-6612, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33819029

RESUMO

The global prevalence of antibiotic-resistant bacteria has increased the risk of dangerous infections, requiring rapid diagnosis and treatment. The standard method for diagnosis of bacterial infections remains dependent on slow culture-based methods, carried out in central laboratories, not easily extensible to rapid identification of organisms, and thus not optimal for timely treatments at the point-of-care (POC). Here, we demonstrate rapid detection of bacteria by combining electrochemical immunoassays (EC-IA) for pathogen identification with confirmatory quantitative mass spectral immunoassays (MS-IA) based on signal ion emission reactive release amplification (SIERRA) nanoparticles with unique mass labels. This diagnostic method uses compatible reagents for all involved assays and standard fluidics for automatic sample preparation at POC. EC-IA, based on alkaline phosphatase-conjugated pathogen-specific antibodies, quantified down to 104 bacteria per sample when testing Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa lysates. EC-IA quantitation was also obtained for wound samples. The MS-IA using nanoparticles against S. aureus, E. coli, Klebsiella pneumoniae, and P. aeruginosa allowed selective quantitation of ∼105 bacteria per sample. This method preserves bacterial cells allowing extraction and amplification of 16S ribosomal RNA genes and antibiotic resistance genes, as was demonstrated through identification and quantitation of two strains of E. coli, resistant and nonresistant due to ß-lactamase cefotaximase genes. Finally, the combined immunoassays were compared against culture using remnant deidentified patient urine samples. The sensitivities for these immunoassays were 83, 95, and 92% for the prediction of S. aureus, P. aeruginosa, and E. coli or K. pneumoniae positive culture, respectively, while specificities were 85, 92, and 97%. The diagnostic platform presented here with fluidics and combined immunoassays allows for pathogen isolation within 5 min and identification in as little as 15 min to 1 h, to help guide the decision for additional testing, optimally only on positive samples, such as multiplexed or resistance gene assays (6 h).


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Escherichia coli/genética , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Humanos , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética
2.
Anal Chim Acta ; 780: 81-8, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23680554

RESUMO

Peroxynitrite (ONOO(-)) constitutes a major cytotoxic agent, implicated in a host of pathophysiological conditions, thereby stimulating a tremendous interest in evaluating its role as an oxidant in vivo. Some of the detection methods for peroxynitrite include oxidation of fluorescent probes, EPR spectroscopy, chemiluminescence, immunohistochemistry, and probe nitration; however, these are more difficult to apply for real-time quantification due to their inherent complexity. The electrochemical detection of peroxynitrite is a simpler and more convenient technique, but the best of our knowledge there are only few papers to date studying its electrochemical signature, or reporting amperometric microsensors for peroxynitrite. Recently, we have reported the use of layered composite films of poly(3,4-ethylenedioxythiophene) (PEDOT) and hemin (iron protoporphyrin IX) as a platform for amperometric measurement of peroxynitrite. The main goal herein is to investigate the intrinsic catalytic role of hemin electropolymerized thin films on carbon electrodes in oxidative detection of peroxynitrite. The electrocatalytic oxidation of peroxynitrite is characterized by cyclic voltammetry. The catalytic current increased as a function of peroxynitrite's concentration, with a peak potential shifting positively with peroxynitrite's concentration. The catalytic efficiency decreased as the scan rate increased, and the peak potential of the catalytic oxidation was found to depend on pH. We show that optimized hemin-functionalized carbon electrodes can be used as simple platforms for peroxinitrite detection and quantification. We report dose-response amperometry as an electroanalytical determination of this analyte on hemin films and we contrast the intrinsic hemin catalytic role with its performance in the case of the PEDOT-hemin as a composite matrix. Finally, we include some work extending the use of simple hemin films for peroxynitrite determination on carbon microfiber electrodes in a flow system.


Assuntos
Técnicas Eletroquímicas/instrumentação , Hemina/química , Ácido Peroxinitroso/química , Carbono/química , Catálise , Técnicas Eletroquímicas/métodos , Eletrodos , Microscopia Eletrônica de Varredura , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...