Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Mater ; 18(3)2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36827708

RESUMO

Osseointegration of titanium-based implants possessing complex macroscale/microscale/mesoscale/nanoscale (multiscale) topographies support a direct and functional connection with native bone tissue by promoting recruitment, attachment and osteoblastic differentiation of bone marrow stromal cells (MSCs). Recent studies show that the MSCs on these surfaces produce factors, including bone morphogenetic protein 2 (BMP2) that can cause MSCs not on the surface to undergo osteoblast differentiation, suggesting they may produce an osteogenic environmentin vivo. This study examined if soluble factors produced by MSCs in contact with titanium-aluminum-vanadium (Ti6Al4V) implants possessing a complex multiscale biomimetic topography are able to induce osteogenesis ectopically. Ti6Al4V disks were grit-blasted and acid-etched to create surfaces possessing macroscale and microscale roughness (MM), micro/meso/nanoscale topography (MN), and macro/micro/meso/nanoscale topography (MMNTM). Polyether-ether-ketone (PEEK) disks were also fabricated by machining to medical-grade specifications. Surface properties were assessed by scanning electron microscopy, contact angle, optical profilometry, and x-ray photoelectron spectroscopy. MSCs were cultured in growth media (GM). Proteins and local factors in their conditioned media (CM) were measured on days 4, 8, 10 and 14: osteocalcin, osteopontin, osteoprotegerin, BMP2, BMP4, and cytokines interleukins 6, 4 and 10 (IL6, IL4, and IL10). CM was collected from D14 MSCs on MMNTMand tissue culture polystyrene (TCPS) and lyophilized. Gel capsules containing active demineralized bone matrix (DBM), heat-inactivated DBM (iDBM), and iDBM + MMN-GM were implanted bilaterally in the gastrocnemius of athymic nude mice (N= 8 capsules/group). Controls included iDBM + GM; iDBM + TCPS-CM from D5 to D10 MSCs; iDBM + MMN-CM from D5 to D10; and iDBM + rhBMP2 (R&D Systems) at a concentration similar to D5-D10 production of MSCs on MMNTMsurfaces. Legs were harvested at 35D. Bone formation was assessed by micro computed tomography and histomorphometry (hematoxylin and eosin staining) with the histology scored according to ASTM 2529-13. DNA was greatest on PEEK at all time points; DNA was lowest on MN at early time points, but increased with time. Cells on PEEK exhibited small changes in differentiation with reduced production of BMP2. Osteoblast differentiation was greatest on the MN and MMNTM, reflecting increased production of BMP2 and BMP4. Pro-regenerative cytokines IL4 and IL10 were increased on Ti-based surfaces; IL6 was reduced compared to PEEK. None of the media from TCPS cultures was osteoinductive. However, MMN-CM exhibited increased bone formation compared to iDBM and iDBM + rhBMP2. Furthermore, exogenous rhBMP2 alone, at the concentration found in MMN-CM collected from D5 to D10 cultures, failed to induce new bone, indicating that other factors in the CM play a critical role in that osteoinductive microenvironment. MSCs cultured on MMNTMTi6Al4V surfaces differentiate and produce an increase in local factors, including BMP2, and the CM from these cultures can induce ectopic bone formation compared to control groups, indicating that the increased bone formation arises from the local response by MSCs to a biomimetic, multiscale surface topography.


Assuntos
Células-Tronco Mesenquimais , Titânio , Animais , Camundongos , Titânio/química , Alumínio/metabolismo , Vanádio/metabolismo , Interleucina-6/metabolismo , Microtomografia por Raio-X , Biomimética , Interleucina-10/metabolismo , Interleucina-4/metabolismo , Camundongos Nus , Osteogênese , Diferenciação Celular , Polietilenoglicóis/química , Citocinas/metabolismo , DNA/metabolismo , Propriedades de Superfície , Osseointegração , Osteoblastos , Células Cultivadas
2.
Dent Mater ; 37(4): 690-700, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33589272

RESUMO

OBJECTIVE: Modifications to implant surface properties, including topography, chemistry, and wettability, alter immune response, osteoblast differentiation of bone marrow stromal cells (MSCs), and implant integration in vivo. Dielectric barrier discharge (DBD) plasma treatment has been used to sterilize surfaces and remove adsorbed carbon, improving wettability. However, unless it is used immediately prior to placement, ambient atmospheric hydrocarbons rapidly adhere to the surface, thereby reducing its hydrophilicity. Moreover, this method is not practical in many clinical settings. The aim of this study was to evaluate the effectiveness of an on-site benchtop modification technique for implants at time of placement, consisting of a DBD plasma that is used to sterilize implants that are pre-packaged in a vacuum. Effects of the plasma-treatment on implant surface properties and cellular response of MSCs and osteoblasts were assessed in vitro. METHODS: Titanium-aluminum-vanadium implant surfaces were grit-blasted (GB) or grit-blasted and acid-etched (AE), and packaged under vacuum. AE surfaces were also plasma-treated using the benchtop device (GB + AE) and then removed from the vacuum. GB surface morphology was altered with AE but AE microroughness was not changed with the plasma-treatment. Plasma-treatment increased the surface wettability, but did not alter surface atomic concentrations of titanium, oxygen, or carbon. RESULTS: MSCs and osteoblast-like cells (MG63 s) produced increased concentrations of osteocalcin, osteopontin, and osteoprotegerin after plasma-treatment of AE surfaces compared to non-plasma-treated AE surfaces; production of IL6 was reduced and IL10 was. Aging GB + AE surfaces for 7 days after plasma-treatment but still in the vacuum environment reduced the effectiveness of plasma on cellular response. SIGNIFICANCE: Overall, these data suggest that application of benchtop plasma at the time of implant placement can alter the surface free energy of an implant surface without modifying surface chemical composition and enhance the differentiation and activity of MSCs and osteoblasts that are in contact with these implant surfaces.


Assuntos
Implantes Dentários , Titânio , Diferenciação Celular , Osteoblastos , Plasma , Propriedades de Superfície
3.
J Orthop Res ; 39(9): 1908-1920, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33002223

RESUMO

Statement of Clinical Significance: There remains the need to develop materials and surfaces that can increase the rate of implant osseointegration. Though osteoanabolic agents, like bone morphogenetic protein (BMP), can provide signaling for osteogenesis, the appropriate design of implants can also produce an innate cellular response that may reduce or eliminate the need to use additional agents to stimulate bone formation. Studies show that titanium implant surfaces that mimic the physical properties of osteoclast resorption pits regulate cellular responses of bone marrow stromal cells (MSCs) by altering cell morphology, transcriptomes, and local factor production to increase their differentiation into osteoblasts without osteogenic media supplements required for differentiation of MSCs on tissue culture polystyrene (TCPS). The goal of this study was to determine how cells in contact with biomimetic implant surfaces regulate the microenvironment around these surfaces in vitro. Two different approaches were used. First, unidirectional signaling was assessed by treating human MSCs grown on TCPS with conditioned media from MSC cultures grown on Ti6Al4V biomimetic surfaces. In the second set of studies, bidirectional signaling was assessed by coculturing MSCs grown on mesh inserts that were placed into culture wells in which MSCs were grown on the biomimetic Ti6Al4V substrates. The results show that biomimetic Ti6Al4V surface properties induce MSCs to produce factors within 7 days of culture that stimulate MSCs not in contact with the surface to exhibit an osteoblast phenotype via endogenous BMP2 acting in a paracrine signaling manner.


Assuntos
Células-Tronco Mesenquimais , Titânio , Alumínio/metabolismo , Células da Medula Óssea , Diferenciação Celular , Células Cultivadas , Osteoblastos/metabolismo , Osteogênese , Propriedades de Superfície , Titânio/química , Vanádio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA