Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Magn Reson Med ; 89(6): 2242-2254, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36763898

RESUMO

PURPOSE: To develop a motion-robust reconstruction technique for free-breathing cine imaging with multiple averages. METHOD: Retrospective motion correction through multiple average k-space data elimination (REMAKE) was developed using iterative removal of k-space segments (from individual k-space samples) that contribute most to motion corruption while combining any remaining segments across multiple signal averages. A variant of REMAKE, termed REMAKE+, was developed to address any losses in SNR due to k-space information removal. With REMAKE+, multiple reconstructions using different initial conditions were performed, co-registered, and averaged. Both techniques were validated against clinical "standard" signal averaging reconstruction in a static phantom (with simulated motion) and 15 patients undergoing free-breathing cine imaging with multiple averages. Quantitative analysis of myocardial sharpness, blood/myocardial SNR, myocardial-blood contrast-to-noise ratio (CNR), as well as subjective assessment of image quality and rate of diagnostic quality images were performed. RESULTS: In phantom, motion artifacts using "standard" (RMS error [RMSE]: 2.2 ± 0.5) were substantially reduced using REMAKE/REMAKE+ (RMSE: 1.5 ± 0.4/1.0 ± 0.4, p < 0.01). In patients, REMAKE/REMAKE+ led to higher myocardial sharpness (0.79 ± 0.09/0.79 ± 0.1 vs. 0.74 ± 0.12 for "standard", p = 0.004/0.04), higher image quality (1.8 ± 0.2/1.9 ± 0.2 vs. 1.6 ± 0.4 for "standard", p = 0.02/0.008), and a higher rate of diagnostic quality images (99%/100% vs. 94% for "standard"). Blood/myocardial SNR for "standard" (94 ± 30/33 ± 10) was higher vs. REMAKE (80 ± 25/28 ± 8, p = 0.002/0.005) and tended to be lower vs. REMAKE+ (105 ± 33/36 ± 12, p = 0.02/0.06). Myocardial-blood CNR for "standard" (61 ± 22) was higher vs. REMAKE (53 ± 19, p = 0.003) and lower vs. REMAKE+ (69 ± 24, p = 0.007). CONCLUSIONS: Compared to "standard" signal averaging reconstruction, REMAKE and REMAKE+ provide improved myocardial sharpness, image quality, and rate of diagnostic quality images.


Assuntos
Coração , Imagem Cinética por Ressonância Magnética , Humanos , Imagem Cinética por Ressonância Magnética/métodos , Estudos Retrospectivos , Coração/diagnóstico por imagem , Respiração , Movimento (Física) , Artefatos
4.
Front Cardiovasc Med ; 9: 884221, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571164

RESUMO

Introduction: To develop and test the feasibility of free-breathing (FB), high-resolution quantitative first-pass perfusion cardiac MR (FPP-CMR) using dual-echo Dixon (FOSTERS; Fat-water separation for mOtion-corrected Spatio-TEmporally accelerated myocardial peRfuSion). Materials and Methods: FOSTERS was performed in FB using a dual-saturation single-bolus acquisition with dual-echo Dixon and a dynamically variable Cartesian k-t undersampling (8-fold) approach, with low-rank and sparsity constrained reconstruction, to achieve high-resolution FPP-CMR images. FOSTERS also included automatic in-plane motion estimation and T 2 * correction to obtain quantitative myocardial blood flow (MBF) maps. High-resolution (1.6 x 1.6 mm2) FB FOSTERS was evaluated in eleven patients, during rest, against standard-resolution (2.6 x 2.6 mm2) 2-fold SENSE-accelerated breath-hold (BH) FPP-CMR. In addition, MBF was computed for FOSTERS and spatial wavelet-based compressed sensing (CS) reconstruction. Two cardiologists scored the image quality (IQ) of FOSTERS, CS, and standard BH FPP-CMR images using a 4-point scale (1-4, non-diagnostic - fully diagnostic). Results: FOSTERS produced high-quality images without dark-rim and with reduced motion-related artifacts, using an 8x accelerated FB acquisition. FOSTERS and standard BH FPP-CMR exhibited excellent IQ with an average score of 3.5 ± 0.6 and 3.4 ± 0.6 (no statistical difference, p > 0.05), respectively. CS images exhibited severe artifacts and high levels of noise, resulting in an average IQ score of 2.9 ± 0.5. MBF values obtained with FOSTERS presented a lower variance than those obtained with CS. Discussion: FOSTERS enabled high-resolution FB FPP-CMR with MBF quantification. Combining motion correction with a low-rank and sparsity-constrained reconstruction results in excellent image quality.

5.
Magn Reson Med ; 88(2): 663-675, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35344593

RESUMO

PURPOSE: To implement and evaluate a simultaneous multi-slice balanced SSFP (SMS-bSSFP) perfusion sequence and compressed sensing reconstruction for cardiac MR perfusion imaging with full left ventricular (LV) coverage (nine slices/heartbeat) and high spatial resolution (1.4 × 1.4 mm2 ) at 1.5T. METHODS: A preliminary study was performed to evaluate the performance of blipped controlled aliasing in parallel imaging (CAIPI) and RF-CAIPI with gradient-controlled local Larmor adjustment (GC-LOLA) in the presence of fat. A nine-slice SMS-bSSFP sequence using RF-CAIPI with GC-LOLA with high spatial resolution (1.4 × 1.4 mm2 ) and a conventional three-slice sequence with conventional spatial resolution (1.9 × 1.9 mm2 ) were then acquired in 10 patients under rest conditions. Qualitative assessment was performed to assess image quality and perceived signal-to-noise ratio (SNR) on a 4-point scale (0: poor image quality/low SNR; 3: excellent image quality/high SNR), and the number of myocardial segments with diagnostic image quality was recorded. Quantitative measurements of myocardial sharpness and upslope index were performed. RESULTS: Fat signal leakage was significantly higher for blipped CAIPI than for RF-CAIPI with GC-LOLA (7.9% vs. 1.2%, p = 0.010). All 10 SMS-bSSFP perfusion datasets resulted in 16/16 diagnostic myocardial segments. There were no significant differences between the SMS and conventional acquisitions in terms of image quality (2.6 ± 0.6 vs. 2.7 ± 0.2, p = 0.8) or perceived SNR (2.8 ± 0.3 vs. 2.7 ± 0.3, p = 0.3). Inter-reader variability was good for both image quality (ICC = 0.84) and perceived SNR (ICC = 0.70). Myocardial sharpness was improved using the SMS sequence compared to the conventional sequence (0.37 ± 0.08 vs 0.32 ± 0.05, p < 0.001). There was no significant difference between measurements of upslope index for the SMS and conventional sequences (0.11 ± 0.04 vs. 0.11 ± 0.03, p = 0.84). CONCLUSION: SMS-bSSFP with multiband factor 3 and compressed sensing reconstruction enables cardiac MR perfusion imaging with three-fold increased spatial coverage and improved myocardial sharpness compared to a conventional sequence, without compromising perceived SNR, image quality, upslope index or number of diagnostic segments.


Assuntos
Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Ventrículos do Coração/diagnóstico por imagem , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Perfusão , Reprodutibilidade dos Testes
6.
J Cardiovasc Magn Reson ; 24(1): 5, 2022 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-35000609

RESUMO

BACKGROUND: The application of cardiovascular magnetic resonance angiography (CMRA) for the assessment of thoracic aortic disease is often associated with prolonged and unpredictable acquisition times and residual motion artefacts. To overcome these limitations, we have integrated undersampled acquisition with image-based navigators and inline non-rigid motion correction to enable a free-breathing, contrast-free Cartesian CMRA framework for the visualization of the thoracic aorta in a short and predictable scan of 3 min. METHODS: 35 patients with thoracic aortic disease (36 ± 13y, 14 female) were prospectively enrolled in this single-center study. The proposed 3D T2-prepared balanced steady state free precession (bSSFP) sequence with image-based navigator (iNAV) was compared to the clinical 3D T2-prepared bSSFP with diaphragmatic-navigator gating (dNAV), in terms of image acquisition time. Three cardiologists blinded to iNAV vs. dNAV acquisition, recorded image quality scores across four aortic segments and their overall diagnostic confidence. Contrast ratio (CR) and relative standard deviation (RSD) of signal intensity (SI) in the corresponding segments were estimated. Co-axial aortic dimensions in six landmarks were measured by two readers to evaluate the agreement between the two methods, along with inter-observer and intra-observer agreement. Kolmogorov-Smirnov test, Mann-Whitney U (MWU), Bland-Altman analysis (BAA), intraclass correlation coefficient (ICC) were used for statistical analysis. RESULTS: The scan time for the iNAV-based approach was significantly shorter (3.1 ± 0.5 min vs. 12.0 ± 3.0 min for dNAV, P = 0.005). Reconstruction was performed inline in 3.0 ± 0.3 min. Diagnostic confidence was similar for the proposed iNAV versus dNAV for all three reviewers (Reviewer 1: 3.9 ± 0.3 vs. 3.8 ± 0.4, P = 0.7; Reviewer 2: 4.0 ± 0.2 vs. 3.9 ± 0.3, P = 0.4; Reviewer 3: 3.8 ± 0.4 vs. 3.7 ± 0.6, P = 0.3). The proposed method yielded higher image quality scores in terms of artefacts from respiratory motion, and non-diagnostic images due to signal inhomogeneity were observed less frequently. While the dNAV approach outperformed the iNAV method in the CR assessment, the iNAV sequence showed improved signal homogeneity along the entire thoracic aorta [RSD SI 5.1 (4.4, 6.5) vs. 6.5 (4.6, 8.6), P = 0.002]. BAA showed a mean difference of < 0.05 cm across the 6 landmarks between the two datasets. ICC showed excellent inter- and intra-observer reproducibility. CONCLUSIONS: Thoracic aortic iNAV-based CMRA with fast acquisition (~ 3 min) and inline reconstruction (3 min) is proposed, resulting in high diagnostic confidence and reproducible aortic measurements.


Assuntos
Aorta Torácica , Angiografia por Ressonância Magnética , Aorta Torácica/diagnóstico por imagem , Feminino , Coração , Humanos , Imageamento Tridimensional , Valor Preditivo dos Testes , Reprodutibilidade dos Testes
7.
Magn Reson Med ; 87(2): 702-717, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34554603

RESUMO

PURPOSE: To investigate the use of a high flip-angle (HFA) balanced SSFP (bSSFP) reference image (in comparison to conventional proton density [PD]-weighted reference images) for conversion of bSSFP myocardial perfusion images into dynamic T1 maps for improved myocardial blood flow (MBF) quantification at 1.5 T. METHODS: The HFA-bSSFP (flip angle [FA] = 50°), PD gradient-echo (PD-GRE; FA = 5°), and PD-bSSFP (FA = 8°) reference images were acquired before a dual-sequence bSSFP perfusion acquisition. Simulations were used to study accuracy and precision of T1 and MBF quantification using the three techniques. The accuracy and precision of T1 , and the precision and intersegment variability of MBF were compared among the three techniques in 8 patients under rest conditions. RESULTS: In simulations, HFA-bSSFP demonstrated improved T1 /MBF precision (higher T1 /MBF SD of 30%-80%/50%-100% and 30%-90%/60%-115% for PD-GRE and PD-bSSFP, respectively). Proton density-GRE and PD-bSSFP were more sensitive to effective FA than HFA-bSSFP (maximum T1 /MBF errors of 13%/43%, 20%/43%, and 1%/3%, respectively). Sensitivity of all techniques (defined as T1 /MBF errors) to native T1 , native T2 , and effective saturation efficiency were negligible (<1%/<1%), moderate (<14%/<19%), and high (<63%/<94%), respectively. In vivo, no difference in T1 accuracy was observed among HFA-bSSFP, PD-GRE, and PD-bSSFP (-9 ± 44 ms vs -28 ± 55 ms vs -22 ± 71 ms, respectively; p > .08). The HFA-bSSFP led to improved T1 /MBF precision (T1 /MBF SD: 41 ± 19 ms/0.24 ± 0.08 mL/g/min vs PD-GRE: 48 ± 20 ms/0.29 ± 0.09 mL/g/min and PD-bSSFP: 59 ± 23 ms/0.33 ± 0.11 mL/g/min; p ≤ .02) and lower MBF intersegment variability (0.14 ± 0.09 mL/g/min vs PD-GRE: 0.21 ± 0.09 mL/g/min and PD-bSSFP: 0.20 ± 0.10 mL/g/min; p ≤ .046). CONCLUSION: We have demonstrated the feasibility of using a HFA-bSSFP reference image for MBF quantification of bSSFP perfusion imaging at 1.5 T. Results from simulations demonstrate that the HFA-bSSFP reference image results in improved precision and reduced sensitivity to effective FA compared with conventional techniques using a PD reference image. Preliminary in vivo data acquired at rest also demonstrate improved precision and intersegment variability using the HFA-bSSFP technique compared with PD techniques; however, a clinical study in patients with coronary artery disease under stress conditions is required to determine the clinical significance of this finding.


Assuntos
Doença da Artéria Coronariana , Imagem de Perfusão do Miocárdio , Circulação Coronária , Humanos , Imageamento por Ressonância Magnética , Reprodutibilidade dos Testes
8.
J Magn Reson Imaging ; 51(2): 492-504, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31342614

RESUMO

BACKGROUND: Conventional myocardial T1 mapping techniques such as modified Look-Locker inversion recovery (MOLLI) generate one T1 map per breathhold. T1 mapping with full left ventricular coverage may be desirable when spatial T1 variations are expected. This would require multiple breathholds, increasing patient discomfort and prolonging scan time. PURPOSE: To develop and characterize a novel FASt single-breathhold 2D multislice myocardial T1 mapping (FAST1) technique for full left ventricular coverage. STUDY TYPE: Prospective. POPULATION/PHANTOM: Numerical simulation, agarose/NiCl2 phantom, 9 healthy volunteers, and 17 patients. FIELD STRENGTH/SEQUENCE: 1.5T/FAST1. ASSESSMENT: Two FAST1 approaches, FAST1-BS and FAST1-IR, were characterized and compared with standard 5-(3)-3 MOLLI in terms of accuracy, precision/spatial variability, and repeatability. STATISTICAL TESTS: Kruskal-Wallis, Wilcoxon signed rank tests, intraclass correlation coefficient analysis, analysis of variance, Student's t-tests, Pearson correlation analysis, and Bland-Altman analysis. RESULTS: In simulation/phantom, FAST1-BS, FAST1-IR, and MOLLI had an accuracy (expressed as T1 error) of 0.2%/4%, 6%/9%, and 4%/7%, respectively, while FAST1-BS and FAST1-IR had a precision penalty of 1.7/1.5 and 1.5/1.4 in comparison with MOLLI, respectively. In healthy volunteers, FAST1-BS/FAST1-IR/MOLLI led to different native myocardial T1 times (1016 ± 27 msec/952 ±22 msec/987 ± 23 msec, P < 0.0001) and spatial variability (66 ± 10 msec/57 ± 8 msec/46 ± 7 msec, P < 0.001). There were no statistically significant differences between all techniques for T1 repeatability (P = 0.18). In vivo native and postcontrast myocardial T1 times in both healthy volunteers and patients using FAST1-BS/FAST1-IR were highly correlated with MOLLI (Pearson correlation coefficient ≥0.93). DATA CONCLUSION: FAST1 enables myocardial T1 mapping with full left ventricular coverage in three separated breathholds. In comparison with MOLLI, FAST1 yield a 5-fold increase of spatial coverage, limited penalty of T1 precision/spatial variability, no significant difference of T1 repeatability, and highly correlated T1 times. FAST1-IR provides improved T1 precision/spatial variability but reduced accuracy when compared with FAST1-BS. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2020;51:492-504.


Assuntos
Coração , Imageamento por Ressonância Magnética , Humanos , Miocárdio , Imagens de Fantasmas , Estudos Prospectivos , Reprodutibilidade dos Testes
9.
J Magn Reson Imaging ; 50(2): 641-654, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30672041

RESUMO

BACKGROUND: Myocardial T1 mapping shows promise for assessment of cardiomyopathies. Most myocardial T1 mapping techniques, such as modified Look-Locker inversion recovery (MOLLI), generate one T1 map per breath-held acquisition (9-17 heartbeats), which prolongs multislice protocols and may be unsuitable for patients with breath-holding difficulties. PURPOSE: To develop and characterize novel shortened inversion recovery based T1 mapping schemes of 2-5 heartbeats. STUDY TYPE: Prospective. POPULATION/PHANTOM: Numerical simulations, agarose/NiCl2 phantom, 16 healthy volunteers, and 24 patients. FIELD STRENGTH/SEQUENCE: 1.5T/MOLLI. ASSESSMENT: All shortened T1 mapping schemes were characterized and compared with a conventional MOLLI scheme (5-(3)-3) in terms of accuracy, precision, spatial variability, and repeatability. STATISTICAL TESTS: Kruskal-Wallis, Wilcoxon rank sum tests, analysis of variance, Student's t-tests, Bland-Altman analysis, and Pearson correlation analysis. RESULTS: All shortened schemes provided limited T1 time variations (≤2% for T1 times ≤1200 msec) and limited penalty of precision (by a factor of ~1.4-1.5) when compared with MOLLI in numerical simulations. In phantom, differences between all schemes in terms of accuracy, spatial variability, and repeatability did not reach statistical significance (P > 0.71). In healthy volunteers, there were no statistically significant differences between all schemes in terms of native T1 times and repeatability for myocardium (P = 0.21 and P = 0.87, respectively) and blood (P = 0.79 and P = 0.41, respectively). All shortened schemes led to a limited increase of spatial variability for native myocardial T1 mapping with respect to MOLLI (by a factor of 1.2) (P < 0.0001). In both healthy volunteers and patients, the two-heartbeat scheme and MOLLI led to highly linearly correlated T1 times (correlation coefficients ≥0.83). DATA CONCLUSION: The proposed two-heartbeat T1 mapping scheme yields a 5-fold acceleration compared with MOLLI, with highly linearly correlated T1 times, no significant difference of repeatability, and limited spatial variability penalty at 1.5T. This approach may enable myocardial T1 mapping in patients with severe breath-holding difficulties and reduce the examination time of multislice protocols. LEVEL OF EVIDENCE: 1 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:641-654.


Assuntos
Cardiomiopatias/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Simulação por Computador , Feminino , Coração/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Reprodutibilidade dos Testes , Tempo
10.
JACC Cardiovasc Imaging ; 11(5): 686-694, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29153572

RESUMO

OBJECTIVES: This study sought to evaluate the prognostic usefulness of visual and quantitative perfusion cardiac magnetic resonance (CMR) ischemic burden in an unselected group of patients and to assess the validity of consensus-based ischemic burden thresholds extrapolated from nuclear studies. BACKGROUND: There are limited data on the prognostic value of assessing myocardial ischemic burden by CMR, and there are none using quantitative perfusion analysis. METHODS: Patients with suspected coronary artery disease referred for adenosine-stress perfusion CMR were included (n = 395; 70% male; age 58 ± 13 years). The primary endpoint was a composite of cardiovascular death, nonfatal myocardial infarction, aborted sudden death, and revascularization after 90 days. Perfusion scans were assessed visually and with quantitative analysis. Cross-validated Cox regression analysis and net reclassification improvement were used to assess the incremental prognostic value of visual or quantitative perfusion analysis over a baseline clinical model, initially as continuous covariates, then using accepted thresholds of ≥2 segments or ≥10% myocardium. RESULTS: After a median 460 days (interquartile range: 190 to 869 days) follow-up, 52 patients reached the primary endpoint. At 2 years, the addition of ischemic burden was found to increase prognostic value over a baseline model of age, sex, and late gadolinium enhancement (baseline model area under the curve [AUC]: 0.75; visual AUC: 0.84; quantitative AUC: 0.85). Dichotomized quantitative ischemic burden performed better than visual assessment (net reclassification improvement 0.043 vs. 0.003 against baseline model). CONCLUSIONS: This study was the first to address the prognostic benefit of quantitative analysis of perfusion CMR and to support the use of consensus-based ischemic burden thresholds by perfusion CMR for prognostic evaluation of patients with suspected coronary artery disease. Quantitative analysis provided incremental prognostic value to visual assessment and established risk factors, potentially representing an important step forward in the translation of quantitative CMR perfusion analysis to the clinical setting.


Assuntos
Adenosina/administração & dosagem , Doença da Artéria Coronariana/diagnóstico por imagem , Circulação Coronária , Imagem Cinética por Ressonância Magnética , Imagem de Perfusão do Miocárdio/métodos , Vasodilatadores/administração & dosagem , Adulto , Idoso , Doença da Artéria Coronariana/mortalidade , Doença da Artéria Coronariana/fisiopatologia , Doença da Artéria Coronariana/terapia , Progressão da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Prognóstico , Fatores de Risco , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...