Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7975): 824-829, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37532931

RESUMO

The fossil record of cetaceans documents how terrestrial animals acquired extreme adaptations and transitioned to a fully aquatic lifestyle1,2. In whales, this is associated with a substantial increase in maximum body size. Although an elongate body was acquired early in cetacean evolution3, the maximum body mass of baleen whales reflects a recent diversification that culminated in the blue whale4. More generally, hitherto known gigantism among aquatic tetrapods evolved within pelagic, active swimmers. Here we describe Perucetus colossus-a basilosaurid whale from the middle Eocene epoch of Peru. It displays, to our knowledge, the highest degree of bone mass increase known to date, an adaptation associated with shallow diving5. The estimated skeletal mass of P. colossus exceeds that of any known mammal or aquatic vertebrate. We show that the bone structure specializations of aquatic mammals are reflected in the scaling of skeletal fraction (skeletal mass versus whole-body mass) across the entire disparity of amniotes. We use the skeletal fraction to estimate the body mass of P. colossus, which proves to be a contender for the title of heaviest animal on record. Cetacean peak body mass had already been reached around 30 million years before previously assumed, in a coastal context in which primary productivity was particularly high.


Assuntos
Adaptação Fisiológica , Evolução Biológica , Peso Corporal , Fósseis , Baleias , Animais , Aclimatação , Peru , Baleias/anatomia & histologia , Baleias/classificação , Baleias/fisiologia , Tamanho Corporal , Esqueleto , Mergulho
2.
Integr Zool ; 17(1): 24-43, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34002457

RESUMO

The fossil history of turtle and whale barnacles (Coronuloidea: Chelonibiidae, Platylepadidae, Coronulidae and †Emersoniidae) is fragmentary and has only been investigated in part. Morphological inferences and molecular phylogenetic analyses on extant specimens suggest that the roots of whale barnacles (Coronulidae) are to be found among the chelonibiid turtle barnacles, but the hard-part modifications that enabled early coronuloids to attach to the cetacean skin are still largely to be perceived. Here, we reappraise a fossil chelonibiid specimen from the Miocene of insular Tanzania that was previously referred to the living species Chelonibia caretta. This largely forgotten specimen is here described as the holotype of the new species †Chelonibia zanzibarensis. While similar to C. caretta, †C. zanzibarensis exhibits obvious external longitudinal parietal canals occurring in-between external longitudinal parietal septa that abut outwards to form T-shaped flanges, a character so far regarded as proper of the seemingly more derived Coronulidae and Platylepadidae. Along with these features, the presence of a substrate imprint on the shell exterior indicates that †C. zanzibarensis grasped its host's integument in much the same way as coronulids and platylepadids, albeit without the development of macroscopic parietal buttresses and bolsters. Thin section analyses of the inner parietal architecture of some extant and extinct coronuloids conclusively demonstrate that vestiges of comparable external parietal microstructures are present in some living members of Chelonibiidae. This observation strengthens the unity of Coronuloidea while significantly contributing to our understanding of the evolution of the coronuloid shell structure in adapting to a diverse spectrum of hosts.


Assuntos
Exoesqueleto , Evolução Biológica , Fósseis , Thoracica , Tartarugas , Animais , Filogenia , Tanzânia
3.
PLoS One ; 16(7): e0254395, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34264979

RESUMO

The Miocene Pisco Formation, broadly exposed in the Ica Desert of southern Peru, is among the most outstanding Cenozoic marine Fossil-Lagerstätten worldwide. It is renowned for its exceptional preservation and abundance of vertebrate fossils, including a rich assemblage of whales and dolphins (Cetacea). Here, we integrate taphonomic data on 890 marine vertebrate fossils, gathered through 16 different localities. Our observations range from the taxonomic distribution, articulation, completeness, disposition and orientation of skeletons, to the presence of bite marks, associations with shark teeth and macro-invertebrates, bone and soft tissue preservation, and the formation of attendant carbonate concretions and sedimentary structures. We propose that the exceptional preservation characterising many Pisco vertebrates, as well as their exceptionally high abundance, cannot be ascribed to a single cause like high sedimentation rates (as proposed in the past), but rather to the interplay of several favourable factors including: (i) low levels of dissolved oxygen at the seafloor (with the intervention of seasonal anoxic events); (ii) the early onset of mineralisation processes like apatite dissolution/recrystallisation and carbonate mineral precipitation; (iii) rapid burial of carcasses in a soupy substrate and/or a novel mechanism involving scour-induced self-burial; and (iv) original biological richness. Collectively, our observations provide a comprehensive overview of the taphonomic processes that shaped one of South America's most important fossil deposits, and suggest a model for the formation of other marine vertebrate Fossil-Lagerstätten.


Assuntos
Fósseis , Animais , Invertebrados , Paleontologia , Peru
4.
R Soc Open Sci ; 5(4): 172302, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29765678

RESUMO

The South Asian river dolphin (Platanista gangetica) is the only extant survivor of the large clade Platanistoidea, having a well-diversified fossil record from the Late Oligocene to the Middle Miocene. Based on a partial skeleton collected from the Chilcatay Formation (Chilcatay Fm; southern coast of Peru), we report here a new squalodelphinid genus and species, Macrosqualodelphis ukupachai. A volcanic ash layer, sampled near the fossil, yielded the 40Ar/39Ar age of 18.78 ± 0.08 Ma (Burdigalian, Early Miocene). The phylogenetic analysis places Macrosqualodelphis as the earliest branching squalodelphinid. Combined with several cranial and dental features, the large body size (estimated body length of 3.5 m) of this odontocete suggests that it consumed larger prey than the other members of its family. Together with Huaridelphis raimondii and Notocetus vanbenedeni, both also found in the Chilcatay Fm, this new squalodelphinid further demonstrates the peculiar local diversity of the family along the southeastern Pacific coast, possibly related to their partition into different dietary niches. At a wider geographical scale, the morphological and ecological diversity of squalodelphinids confirms the major role played by platanistoids during the Early Miocene radiation of crown odontocetes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...