Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Photochem Photobiol B ; 254: 112903, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38608335

RESUMO

This first-in-its-class proof-of-concept study explored the use of bionanovesicles for the delivery of photosensitizer into cultured cholangiocarcinoma cells and subsequent treatment by photodynamic therapy (PDT). Two types of bionanovesicles were prepared: cellular vesicles (CVs) were fabricated by sonication-mediated nanosizing of cholangiocarcinoma (TFK-1) cells, whereas cell membrane vesicles (CMVs) were produced by TFK-1 cell and organelle membrane isolation and subsequent nanovesicularization by sonication. The bionanovesicles were loaded with zinc phthalocyanine (ZnPC). The CVs and CMVs were characterized (size, polydispersity index, zeta potential, stability, ZnPC encapsulation efficiency, spectral properties) and assayed for tumor (TFK-1) cell association and uptake (flow cytometry, confocal microscopy), intracellular ZnPC distribution (confocal microscopy), dark toxicity (MTS assay), and PDT efficacy (MTS assay). The mean ±â€¯SD diameter, polydispersity index, and zeta potential were 134 ±â€¯1 nm, -16.1 ±â€¯0.9, and 0.220 ±â€¯0.013, respectively, for CVs and 172 ±â€¯3 nm, -16.4 ±â€¯1.1, and 0.167 ±â€¯0.022, respectively, for CMVs. Cold storage for 1 wk and incorporation of ZnPC increased bionanovesicular diameter slightly but size remained within the recommended range for in vivo application (136-220 nm). ZnPC was incorporated into CVs and CMVs at an optimal photosensitizer:lipid molar ratio of 0.006 and 0.01, respectively. Both bionanovesicles were avidly taken up by TFK-1 cells, resulting in homogenous intracellular ZnPC dispersion. Photosensitization of TFK-1 cells did not cause dark toxicity, while illumination at 671 nm (35.3 J/cm2) produced LC50 values of 1.11 µM (CVs) and 0.51 µM (CMVs) at 24 h post-PDT, which is superior to most LC50 values generated in tumor cells photosensitized with liposomal ZnPC. In conclusion, CVs and CMVs constitute a potent photosensitizer platform with no inherent cytotoxicity and high PDT efficacy in vitro.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Compostos Organometálicos , Fotoquimioterapia , Humanos , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fotoquimioterapia/métodos , Colangiocarcinoma/tratamento farmacológico , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos , Compostos Organometálicos/farmacologia , Compostos de Zinco , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 23(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36499301

RESUMO

Nanoparticles (NPs) are commonly modified with tumor-targeting moieties that recognize proteins overexpressed on the extracellular membrane to increase their specific interaction with target cells. Nanobodies (Nbs), the variable domain of heavy chain-only antibodies, are a robust targeting ligand due to their small size, superior stability, and strong binding affinity. For the clinical translation of targeted Nb-NPs, it is essential to understand how the number of Nbs per NP impacts the receptor recognition on cells. To study this, Nbs targeting the hepatocyte growth factor receptor (MET-Nbs) were conjugated to PEGylated liposomes at a density from 20 to 800 per liposome and their targeting efficiency was evaluated in vitro. MET-targeted liposomes (MET-TLs) associated more profoundly with MET-expressing cells than non-targeted liposomes (NTLs). MET-TLs with approximately 150-300 Nbs per liposome exhibited the highest association and specificity towards MET-expressing cells and retained their targeting capacity when pre-incubated with proteins from different sources. Furthermore, a MET-Nb density above 300 Nbs per liposome increased the interaction of MET-TLs with phagocytic cells by 2-fold in ex vivo human blood compared to NTLs. Overall, this study demonstrates that adjusting the MET-Nb density can increase the specificity of NPs towards their intended cellular target and reduce NP interaction with phagocytic cells.


Assuntos
Nanopartículas , Neoplasias , Anticorpos de Domínio Único , Humanos , Lipossomos/química , Ligantes
3.
J Control Release ; 343: 338-346, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35104571

RESUMO

The size of polymeric micelles crucially affects their tumor accumulation, penetration and antitumor efficacy. In the present study, micelles were formed based on amphiphilic poly(N-2-hydroxypropyl methacrylamide)-block-poly(N-2-benzoyloxypropyl methacrylamide) (p(HPMAm)-b-p(HPMAm-Bz)) via the solvent extraction method, and factors impacting micelle size were systematically studied, including the molecular weight of the polymers, homopolymer content, and processing methods (i.e., batch process versus continuous microfluidics). The formation of core-shell structured micelles was demonstrated by light scattering, sedimentation velocity and electron microscopy analysis. Micellar size and aggregation number increased with decreasing the molecular weight ratio of the hydrophilic/hydrophobic block. The presence of hydrophobic p(HPMAm-Bz) homopolymer and high copolymer concentration increased micelle size, while the presence of hydrophilic p(HPMAm) homopolymer did not affect micellar size. Regarding processing conditions, it was found that the use of tetrahydrofuran and acetone as solvents for the polymers resulted in larger micelles, likely due to their relatively high water-solvent interaction parameters as compared to other solvents tested, i.e., dimethylformamide, dimethylacetamide, and dimethyl sulfoxide. Among the latter, only dimethylformamide led to micelles with a narrow polydispersity. Addition of dimethylformamide to an aqueous solvent and faster mixing of two solvents using microfluidics favored the formation of smaller micelles. In conclusion, our results show that the size of all-HPMA polymeric micelles can be easily tailored from 40 to 120 nm by varying the formulation properties and processing parameters.


Assuntos
Dimetilformamida , Micelas , Metacrilatos , Polietilenoglicóis/química , Polímeros/química , Solventes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...