Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
Phys Imaging Radiat Oncol ; 30: 100579, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38707628

RESUMO

Background and Purpose: The feasibility of acquiring diffusion-weighted imaging (DWI) images on an MR-Linac for quantitative response assessment during radiotherapy was explored. DWI data obtained with a Spin Echo Echo Planar Imaging sequence adapted for a 0.35 T MR-Linac were examined and compared with DWI data from a conventional 3 T scanner. Materials and Methods: Apparent diffusion coefficient (ADC) measurements and a distortion correction technique were investigated using DWI-calibrated phantoms and in the brains of seven volunteers. All DWI utilized two phase-encoding directions for distortion correction and off-resonance field estimation. ADC maps in the brain were analyzed for automatically segmented normal tissues. Results: Phantom ADC measurements on the MR-Linac were within a 3 % margin of those recorded by the 3 T scanner. The maximum distortion observed in the phantom was 2.0 mm prior to correction and 1.1 mm post-correction on the MR-Linac, compared to 6.0 mm before correction and 3.6 mm after correction at 3 T. In vivo, the average ADC values for gray and white matter exhibited variations of 14 % and 4 %, respectively, for different selections of b-values on the MR-Linac. Distortions in brain images before correction, estimated through the off-resonance field, reached 2.7 mm on the MR-Linac and 12 mm at 3 T. Conclusion: Accurate ADC measurements are achievable on a 0.35 T MR-Linac, both in phantom and in vivo. The selection of b-values significantly influences ADC values in vivo. DWI on the MR-Linac demonstrated lower distortion levels, with a maximum distortion reduced to 1.1 mm after correction.

2.
Wien Klin Wochenschr ; 136(7-8): 236-238, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38305909

RESUMO

Techniques of artificial intelligence (AI) are increasingly used in the treatment of patients, such as providing a diagnosis in radiological imaging, improving workflow by triaging patients or providing an expert opinion based on clinical symptoms; however, such AI techniques also hold intrinsic risks as AI algorithms may point in the wrong direction and constitute a black box without explaining the reason for the decision-making process.This article outlines a case where an erroneous ChatGPT diagnosis, relied upon by the patient to evaluate symptoms, led to a significant treatment delay and a potentially life-threatening situation. With this case, we would like to point out the typical risks posed by the widespread application of AI tools not intended for medical decision-making.


Assuntos
Ataque Isquêmico Transitório , Humanos , Ataque Isquêmico Transitório/diagnóstico , Ataque Isquêmico Transitório/etiologia , Inteligência Artificial , Diagnóstico Tardio , Algoritmos , Tomada de Decisão Clínica
3.
Diagnostics (Basel) ; 13(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958239

RESUMO

OBJECTIVES: Breast density is considered an independent risk factor for the development of breast cancer. This study aimed to quantitatively assess the percent breast density (PBD) and the mammary glands volume (MGV) according to the patient's age and breast quadrant. We propose a regression model to estimate PBD and MGV as a function of the patient's age. METHODS: The breast composition in 1027 spiral breast CT (BCT) datasets without soft tissue masses, calcifications, or implants from 517 women (57 ± 8 years) were segmented. The breast tissue volume (BTV), MGV, and PBD of the breasts were measured in the entire breast and each of the four quadrants. The three breast composition features were analyzed in the seven age groups, from 40 to 74 years in 5-year intervals. A logarithmic model was fitted to the BTV, and a multiplicative inverse model to the MGV and PBD as a function of age was established using a least-squares method. RESULTS: The BTV increased from 545 ± 345 to 676 ± 412 cm3, and the MGV and PBD decreased from 111 ± 164 to 57 ± 43 cm3 and from 21 ± 21 to 11 ± 9%, respectively, from the youngest to the oldest group (p < 0.05). The average PBD over all ages were 14 ± 13%. The regression models could predict the BTV, MGV, and PBD based on the patient's age with residual standard errors of 386 cm3, 67 cm3, and 13%, respectively. The reduction in MGV and PBD in each quadrant followed the ones in the entire breast. CONCLUSIONS: The PBD and MGV computed from BCT examinations provide important information for breast cancer risk assessment in women. The study quantified the breast mammary gland reduction and density decrease over the entire breast. It established mathematical models to estimate the breast composition features-BTV, MGV, and PBD, as a function of the patient's age.

4.
Insights Imaging ; 14(1): 185, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932462

RESUMO

OBJECTIVES: Development of automated segmentation models enabling standardized volumetric quantification of fibroglandular tissue (FGT) from native volumes and background parenchymal enhancement (BPE) from subtraction volumes of dynamic contrast-enhanced breast MRI. Subsequent assessment of the developed models in the context of FGT and BPE Breast Imaging Reporting and Data System (BI-RADS)-compliant classification. METHODS: For the training and validation of attention U-Net models, data coming from a single 3.0-T scanner was used. For testing, additional data from 1.5-T scanner and data acquired in a different institution with a 3.0-T scanner was utilized. The developed models were used to quantify the amount of FGT and BPE in 80 DCE-MRI examinations, and a correlation between these volumetric measures and the classes assigned by radiologists was performed. RESULTS: To assess the model performance using application-relevant metrics, the correlation between the volumes of breast, FGT, and BPE calculated from ground truth masks and predicted masks was checked. Pearson correlation coefficients ranging from 0.963 ± 0.004 to 0.999 ± 0.001 were achieved. The Spearman correlation coefficient for the quantitative and qualitative assessment, i.e., classification by radiologist, of FGT amounted to 0.70 (p < 0.0001), whereas BPE amounted to 0.37 (p = 0.0006). CONCLUSIONS: Generalizable algorithms for FGT and BPE segmentation were developed and tested. Our results suggest that when assessing FGT, it is sufficient to use volumetric measures alone. However, for the evaluation of BPE, additional models considering voxels' intensity distribution and morphology are required. CRITICAL RELEVANCE STATEMENT: A standardized assessment of FGT density can rely on volumetric measures, whereas in the case of BPE, the volumetric measures constitute, along with voxels' intensity distribution and morphology, an important factor. KEY POINTS: • Our work contributes to the standardization of FGT and BPE assessment. • Attention U-Net can reliably segment intricately shaped FGT and BPE structures. • The developed models were robust to domain shift.

5.
Sci Rep ; 13(1): 7530, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37161046

RESUMO

Myoglobin (MB) is expressed in different cancer types and may act as a tumor suppressor in breast cancer. The mechanisms by which basal MB expression level impacts murine mammary tumorigenesis are unclear. We investigated how MB expression in breast cancer influences proliferation, metastasis, tumor hypoxia, and chemotherapy treatment in vivo. We crossed PyMT and WapCreTrp53flox mammary cancer mouse models that differed in tumor grade/type and onset of mammary carcinoma with MB knockout mice. The loss of MB in WapCre;Trp53flox mice did not affect tumor development and progression. On the other hand, loss of MB decreased tumor growth and increased tissue hypoxia as well as the number of lung metastases in PyMT mice. Furthermore, Doxorubicin therapy prevented the stronger metastatic propensity of MB-deficient tumors in PyMT mice. This suggests that, although MB expression predicts improved prognosis in breast cancer patients, MB-deficient tumors may still respond well to first-line therapies. We propose that determining the expression level of MB in malignant breast cancer biopsies will improve tumor stratification, outcome prediction, and personalized therapy in cancer patients.


Assuntos
Carcinoma , Mioglobina , Animais , Camundongos , Mioglobina/genética , Biópsia , Modelos Animais de Doenças , Hipóxia/genética , Camundongos Knockout
6.
Int Urogynecol J ; 34(9): 2197-2206, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37042972

RESUMO

INTRODUCTION AND HYPOTHESIS: The purpose was to investigate the safety and feasibility of transurethral injections of autologous muscle precursor cells (MPCs) into the external urinary sphincter (EUS) to treat stress urinary incontinence (SUI) in female patients. METHODS: Prospective and randomised phase I clinical trial. Standardised 1-h pad test, International Consultation on Incontinence Questionnaire-Urinary Incontinence Short Form (ICIQ-UI-SF), urodynamic study, and MRI of the pelvis were performed at baseline and 6 months after treatment. MPCs gained through open muscle biopsy were transported to a GMP facility for processing and cell expansion. The final product was injected into the EUS via a transurethral ultrasound-guided route. Primary outcomes were defined as any adverse events (AEs) during follow-up. Secondary outcomes were functional, questionnaire, and radiological results. RESULTS: Ten female patients with SUI grades I-II were included in the study and 9 received treatment. Out of 8 AEs, 3 (37.5%) were potentially related to treatment and treated conservatively: 1 urinary tract infection healed with antibiotics treatment, 1 dysuria and 1 discomfort at biopsy site. Functional urethral length under stress was 25 mm at baseline compared with 30 mm at 6 months' follow-up (p=0.009). ICIQ-UI-SF scores improved from 7 points at baseline to 4 points at follow-up (p=0.035). MRI of the pelvis revealed no evidence of tumour or necrosis, whereas the diameter of the EUS muscle increased from 1.8 mm at baseline to 1.9 mm at follow-up (p=0.009). CONCLUSION: Transurethral injections of autologous MPCs into the EUS for treatment of SUI in female patients can be regarded as safe and feasible. Only a minimal number of expected and easily treatable AEs were documented.


Assuntos
Incontinência Urinária por Estresse , Incontinência Urinária , Humanos , Feminino , Incontinência Urinária por Estresse/terapia , Estudos Prospectivos , Uretra/diagnóstico por imagem , Músculos , Resultado do Tratamento
7.
Radiol Med ; 128(2): 149-159, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36598734

RESUMO

PURPOSE: To compare the positive predictive values (PPVs) of BI-RADS categories used to assess pure mammographic calcifications in women with and without a previous history of breast cancer (PHBC). MATERIALS AND METHODS: In this retrospective study, all consecutive pure mammographic calcifications (n = 320) undergoing a stereotactic biopsy between 2016 and 2018 were identified. Mammograms were evaluated in consensus by two radiologists according to BI-RADS and blinded to patient history and pathology results. Final pathologic results were used as the standard of reference. PPV of BI-RADS categories were compared between the two groups. Data were evaluated using standard statistics, Mann-Whitney U tests and Chi-square tests. RESULTS: Two hundred sixty-eight patients (274 lesions, median age 54 years, inter-quartile range, 50-65 years) with a PHBC (n = 46) and without a PHBC (n = 222) were included. Overall PPVs were the following: BI-RADS 2, 0% (0 of 56); BI-RADS 3, 9.1% (1 of 11); BI-RADS 4a, 16.2% (6 of 37); BI-RADS 4b, 37.5% (48 of 128); BI-RADS 4c, 47.3% (18 of 38) and BI-RADS 5, 100% (4 of 4). The PPV of BI-RADS categories was similar in patients with and without a PHBC (P = .715). Calcifications were more often malignant in patients with a PHBC older than 10 years (47.3%, 9 of 19) compared to 1-2 years (25%, 1 of 4), 2-5 years (20%, 2 of 10) and 5-10 years (0%, of 13) from the first breast cancer (P = .005). CONCLUSION: PPV of mammographic calcifications is similar in women with or without PHBC when BI-RADS classification is strictly applied. A higher risk of malignancy was observed in patients with a PHBC longer than 10 years.


Assuntos
Neoplasias da Mama , Calcinose , Feminino , Humanos , Pessoa de Meia-Idade , Neoplasias da Mama/patologia , Estudos Retrospectivos , Mamografia/métodos , Biópsia , Valor Preditivo dos Testes
8.
Med Phys ; 50(4): 2417-2428, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36622370

RESUMO

BACKGROUND: Spiral breast computed tomography (BCT) equipped with a photon-counting detector (PCD) is a new radiological modality allowing for the compression-free acquisition of high-resolution 3-D datasets of the breast. Optimized dose exposu04170/re setups according to breast size were previously proposed but could not effectively be applied in a clinical environment due to ambiguity in measuring breast size. PURPOSE: This study aims to report the standard radiation dose values in a large cohort of patients examined with BCT, and to provide a mathematical model to estimate radiation dose based on morphological features of the breast. METHODS: This retrospective study was conducted on 1657 BCT examinations acquired between 2018 and 2021 from 829 participants (57 ± 10 years, all female). Applying a dedicated breast tissue segmentation algorithm and Monte Carlo (MC) simulation, mean absorbed dose (MAD), mean glandular dose (MGD), mean skin dose (MSD), maximum glandular dose (maxGD), and maximum skin dose (maxSD) were calculated and related to morphological features such as breast volume, effective diameter, breast length, skin volume, and glandularity. Effective dose (ED) was calculated by applying the corresponding beam and tissue weighting factors, 1 Sv/Gy and 0.12 per breast. Relevant morphological features predicting dose values were identified based on the Spearman's rank correlation coefficient. Exponential or bi-exponential models predicting the dose values as a function of morphological features were fitted by using a non-linear least squares (LS) method. The models were validated by assessing R2 and residual standard error (RSE). RESULTS: The most relevant morphological features for radiation dose estimation were the breast volume (correlation coefficient: -0.8), diameter (-0.7), and length (-0.6). The glandularity presented a weak-positive correlation (0.4) with MGD and maxGD due to the inhomogeneous distribution of the glandularity and absorbed dose in the 3-D breast volume. The standard MGDs were calculated to be 7.3 ± 0.7, 6.5 ± 0.3, and 5.9 ± 0.3 mGy, MADs to 7.6 ± 0.8, 6.8 ± 0.3, and 6.2 ± 0.3 mGy, maxSDs to 19.9 ± 1.6, 19.5 ± 0.5, and 18.9 ± 0.5 mGy, and EDs to 0.88 ± 0.08, 0.78 ± 0.04, and 0.72 ± 0.04 mSv for small, medium, and large breasts with average breast lengths of 5.9 ± 1.6, 8.7 ± 1.3, and 12.2 ± 2.0 cm, respectively. The estimated glandularity - 23.1 ± 16.9, 12.5 ± 11.4, and 6.9 ± 7.3% from small to large breasts. The mathematical models were able to estimate the MAD, MGD, MSD, and maxSD as a function of each morphological feature with only upto 0.5 mGy RSE. CONCLUSION: We presented the typical morphological features and standard dose values according to the breast size acquired from a large patient cohort. We established radiation dose estimation models allowing accurate estimation of dose values including MGD with an acceptable RSE based on each of the easily measured morphological features of the breast. Clinicians could use the breast length to operate as a dosimetric alert of the scanner prior to a BCT scan. Radiation exposure for BCT was lower than diagnostic mammography (MG) and cone-beam breast CT (BCT).


Assuntos
Mama , Mamografia , Humanos , Feminino , Estudos Retrospectivos , Doses de Radiação , Método de Monte Carlo , Imagens de Fantasmas , Mama/diagnóstico por imagem , Mamografia/métodos , Tomografia Computadorizada Espiral
9.
Clin Imaging ; 95: 28-36, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36603416

RESUMO

OBJECTIVE: In this study, we investigate the feasibility of a deep Convolutional Neural Network (dCNN), trained with mammographic images, to detect and classify microcalcifications (MC) in breast-CT (BCT) images. METHODS: This retrospective single-center study was approved by the local ethics committee. 3518 icons generated from 319 mammograms were classified into three classes: "no MC" (1121), "probably benign MC" (1332), and "suspicious MC" (1065). A dCNN was trained (70% of data), validated (20%), and tested on a "real-world" dataset (10%). The diagnostic performance of the dCNN was tested on a subset of 60 icons, generated from 30 mammograms and 30 breast-CT images, and compared to human reading. ROC analysis was used to calculate diagnostic performance. Moreover, colored probability maps for representative BCT images were calculated using a sliding-window approach. RESULTS: The dCNN reached an accuracy of 98.8% on the "real-world" dataset. The accuracy on the subset of 60 icons was 100% for mammographic images, 60% for "no MC", 80% for "probably benign MC" and 100% for "suspicious MC". Intra-class correlation between the dCNN and the readers was almost perfect (0.85). Kappa values between the two readers (0.93) and the dCNN were almost perfect (reader 1: 0.85 and reader 2: 0.82). The sliding-window approach successfully detected suspicious MC with high image quality. The diagnostic performance of the dCNN to classify benign and suspicious MC was excellent with an AUC of 93.8% (95% CI 87, 4%-100%). CONCLUSION: Deep convolutional networks can be used to detect and classify benign and suspicious MC in breast-CT images.


Assuntos
Doenças Mamárias , Redes Neurais de Computação , Humanos , Estudos Retrospectivos , Mamografia/métodos , Tomografia Computadorizada por Raios X , Curva ROC
10.
Clin Imaging ; 93: 93-102, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36423483

RESUMO

OBJECTIVES: In this retrospective, single-center study we investigate the changes of radiomics features during dynamic breast-MRI for healthy tissue compared to benign and malignant lesions. METHODS: 60 patients underwent breast-MRI using a dynamic 3D gradient-echo sequence. Changes of 34 texture features (TF) in 30 benign and 30 malignant lesions were calculated for 5 dynamic datasets and corresponding 4 subtraction datasets. Statistical analysis was performed with ANOVA, and systematic changes in features were described by linear and polynomial regression models. RESULTS: ANOVA revealed significant differences (p < 0.05) between normal tissue and lesions in 13 TF, compared to 9 TF between benign and malignant lesions. Most TF showed significant differences in early dynamic and subtraction datasets. TF associated with homogeneity were suitable to discriminate between healthy parenchyma and lesions, whereas run-length features were more suitable to discriminate between benign and malignant lesions. Run length nonuniformity (RLN) was the only feature able to distinguish between all three classes with an AUC of 88.3%. Characteristic changes were observed with a systematic increase or decrease for most TF with mostly polynomial behavior. Slopes showed earlier peaks in malignant lesions, compared to benign lesions. Mean values for the coefficient of determination were higher during subtraction sequences, compared to dynamic sequences (benign: 0.98 vs 0. 72; malignant: 0.94 vs 0.74). CONCLUSIONS: TF of breast lesions follow characteristic patterns during dynamic breast-MRI, distinguishing benign from malignant lesions. Early dynamic and subtraction datasets are particularly suitable for texture analysis in breast-MRI. Features associated with tissue homogeneity seem to be indicative of benign lesions.


Assuntos
Imageamento por Ressonância Magnética , Humanos , Estudos Retrospectivos , Radiografia , Biomarcadores
11.
Eur J Radiol ; 158: 110632, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36463702

RESUMO

PURPOSE: To compare the subjective image quality assessment using B-CT and digital mammography in women with personal history of breast cancer (PHBC). METHOD: In this retrospective study 32 patients with PHBC were included. Each patient had undergone a B-CT examination and a previous mammogram in a time interval of less than 18 months between the two examinations. Two radiologists evaluated the two examinations independently with regard to the presence of lesions, BI-RADS classification, level of confidence for the overall exam interpretation, scar evaluation and image quality including image degradation due to clip artifacts. Level of confidence and image quality were assessed using a 5-point Likert scale. A p-value of less than 0.01 was considered statistically significant. RESULTS: Thirty-seven operated and 27 non-operated breasts were included. Confidence for the overall interpretation with B-CT was equal or superior to mammography in 63 cases (98.4 %) for reader 1 and in 58 cases (90.6 %) for reader 2 (p <.001). Confidence for scar evaluation with B-CT was equal or superior to mammography in all cases for reader 1 and in 34 cases (91.9 %) for readers 2 (p <.001). One case with local recurrence in B-CT was identified by both readers and no false positive findings were reported. A moderate to high image degradation due to beam-hardening artifacts has been reported by both readers in 29.4 % of cases due to surgical clips in the B-CT volume. CONCLUSIONS: B-CT in patients with PHBC provides high quality images that can be evaluated with confidence equal or superior to mammography.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Estudos Retrospectivos , Neoplasias da Mama/diagnóstico por imagem , Cicatriz , Tomografia Computadorizada por Raios X , Mamografia/métodos , Mama/diagnóstico por imagem
12.
Small Methods ; 7(2): e2201061, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36572638

RESUMO

Imaging of iron-based nanoparticles (NPs) remains challenging because of the presence of endogenous iron in tissues that is difficult to distinguish from exogenous iron originating from the NPs. Here, an analytical cascade for characterizing the biodistribution of biomedically relevant iron-based NPs from the organ scale to the cellular and subcellular scales is introduced. The biodistribution on an organ level is assessed by elemental analysis and quantification of magnetic iron by electron paramagnetic resonance, which allowed differentiation of exogenous and endogenous iron. Complementary to these bulk analysis techniques, correlative whole-slide optical and electron microscopy provided spatially resolved insight into the biodistribution of endo- and exogenous iron accumulation in macrophages, with single-cell and single-particle resolution, revealing coaccumulation of iron NPs with endogenous iron in splenic macrophages. Subsequent transmission electron microscopy revealed two types of morphologically distinct iron-containing structures (exogenous nanoparticles and endogenous ferritin) within membrane-bound vesicles in the cytoplasm, hinting at an attempt of splenic macrophages to extract and recycle iron from exogenous nanoparticles. Overall, this strategy enables the distinction of endo- and exogenous iron across scales (from cm to nm, based on the analysis of thousands of cells) and illustrates distribution on organ, cell, and organelle levels.


Assuntos
Ferro , Macrófagos , Distribuição Tecidual , Microscopia Eletrônica , Microscopia Eletrônica de Transmissão
13.
J Appl Clin Med Phys ; 23(10): e13726, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35946049

RESUMO

INTRODUCTION: The quantification of the amount of the glandular tissue and breast density is important to assess breast cancer risk. Novel photon-counting breast computed tomography (CT) technology has the potential to quantify them. For accurate analysis, a dedicated method to segment the breast components-the adipose and glandular tissue, skin, pectoralis muscle, skinfold section, rib, and implant-is required. We propose a fully automated breast segmentation method for breast CT images. METHODS: The framework consists of four parts: (1) investigate, (2) segment the components excluding adipose and glandular tissue, (3) assess the breast density, and (4) iteratively segment the glandular tissue according to the estimated density. For the method, adapted seeded watershed and region growing algorithm were dedicatedly developed for the breast CT images and optimized on 68 breast images. The segmentation performance was qualitatively (five-point Likert scale) and quantitatively (Dice similarity coefficient [DSC] and difference coefficient [DC]) demonstrated according to human reading by experienced radiologists. RESULTS: The performance evaluation on each component and overall segmentation for 17 breast CT images resulted in DSCs ranging 0.90-0.97 and in DCs 0.01-0.08. The readers rated 4.5-4.8 (5 highest score) with an excellent inter-reader agreement. The breast density varied by 3.7%-7.1% when including mis-segmented muscle or skin. CONCLUSION: The automatic segmentation results coincided with the human expert's reading. The accurate segmentation is important to avoid the significant bias in breast density analysis. Our method enables accurate quantification of the breast density and amount of the glandular tissue that is directly related to breast cancer risk.


Assuntos
Neoplasias da Mama , Mama , Humanos , Feminino , Mama/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Densidade da Mama , Algoritmos , Neoplasias da Mama/diagnóstico por imagem
14.
Clin Imaging ; 90: 50-58, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35917662

RESUMO

OBJECTIVE: To investigate aspects of image quality, feasibility and patient comfort in dedicated spiral breast computed tomography (B-CT) in a large patient cohort. METHODS: This retrospective study was approved by the institutional review board. 2418 B-CT scans from 1222 women examined between 04/16/2019 and 04/13/2022 were analyzed. Patients evaluated their comfort during the examination, radiographers carrying out the scans evaluated the patient's mobility and usability of the B-CT device, whereas radiologists assessed lesion contrast, detectability of calcifications, breast coverage and overall image quality. For semi-quantitative assessment, a Likert-Scale was used and statistical significance and correlations were calculated using ANOVAs and Spearman tests. RESULTS: Comfort, mobility and usability of the B-CT were rated each with either "no" or "negligible" complaints in >99%. Image quality was rated with "no" or "negligible complaints" in 96.7%. Lesion contrast and detectability of calcifications were rated either "optimal" or "good" in 92.6% and 98.4%. "Complete" and "almost complete" breast coverage were reported in 41.9%, while the pectoral muscle was found not to be covered in 56.0%. Major parts of the breast were not covered in 2.1%. Some variables were significantly correlated, such as age with comfort (ρ = -0.168, p < .001) and mobility (ρ = -0.172, p < .001) as well as patient weight with lesion contrast (ρ = 0.172, p < .001) and breast coverage (ρ = -0.109, p < .001). CONCLUSIONS: B-CT provides high image quality and contrast of soft tissue lesions as well as calcifications, while covering the pre-pectoral areas of the breast remains challenging. B-CT is easy to operate for the radiographer and comfortable for the majority of women.


Assuntos
Calcinose , Mamografia , Mama/diagnóstico por imagem , Feminino , Humanos , Mamografia/métodos , Conforto do Paciente , Estudos Retrospectivos , Tomografia Computadorizada Espiral/métodos
15.
Diagnostics (Basel) ; 12(7)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35885470

RESUMO

The aim of this study was to investigate the potential of a machine learning algorithm to classify breast cancer solely by the presence of soft tissue opacities in mammograms, independent of other morphological features, using a deep convolutional neural network (dCNN). Soft tissue opacities were classified based on their radiological appearance using the ACR BI-RADS atlas. We included 1744 mammograms from 438 patients to create 7242 icons by manual labeling. The icons were sorted into three categories: "no opacities" (BI-RADS 1), "probably benign opacities" (BI-RADS 2/3) and "suspicious opacities" (BI-RADS 4/5). A dCNN was trained (70% of data), validated (20%) and finally tested (10%). A sliding window approach was applied to create colored probability maps for visual impression. Diagnostic performance of the dCNN was compared to human readout by experienced radiologists on a "real-world" dataset. The accuracies of the models on the test dataset ranged between 73.8% and 89.8%. Compared to human readout, our dCNN achieved a higher specificity (100%, 95% CI: 85.4-100%; reader 1: 86.2%, 95% CI: 67.4-95.5%; reader 2: 79.3%, 95% CI: 59.7-91.3%), and the sensitivity (84.0%, 95% CI: 63.9-95.5%) was lower than that of human readers (reader 1:88.0%, 95% CI: 67.4-95.4%; reader 2:88.0%, 95% CI: 67.7-96.8%). In conclusion, a dCNN can be used for the automatic detection as well as the standardized and observer-independent classification of soft tissue opacities in mammograms independent of the presence of microcalcifications. Human decision making in accordance with the BI-RADS classification can be mimicked by artificial intelligence.

16.
Clin Transl Gastroenterol ; 13(7): e00505, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905415

RESUMO

INTRODUCTION: Magnetic resonance enterography (MRE) is useful for detecting bowel strictures, whereas a number of imaging biomarkers may reflect severity of fibrosis burden in Crohn's disease (CD). This study aimed to verify the association of MRE metrics with histologic fibrosis independent of inflammation. METHODS: This prospective European multicenter study performed MRE imaging on 60 patients with CD with bowel strictures before surgical resection. Locations of 61 histological samples were annotated on MRE examinations, followed by central readings using the Chiorean score and measurement of delayed gain of enhancement (DGE), magnetization transfer ratio, T2-weighted MRI sequences (T2R), apparent diffusion coefficient (ADC), and the magnetic resonance index of activity (MaRIA). Correlations of histology and MRE metrics were assessed. Least Absolute Shrinkage and Selection Operator and receiver operator characteristic (ROC) curve analyses were used to select composite MRE scores predictive of histology and to estimate their predictive value. RESULTS: ADC and MaRIA correlated with fibrosis (R = -0.71, P < 0.0001, and 0.59, P < 0.001) and more moderately with inflammation (R = -0.35, P < 0.01, and R = 0.53, P < 0.001). Lower or no correlations of fibrosis or inflammation were found with DGE, magnetization transfer ratio, or T2R. Least Absolute Shrinkage and Selection Operator and ROC identified a composite score of MaRIA, ADC, and DGE as a very good predictor of histologic fibrosis (ROC area under the curve = 0.910). MaRIA alone was the best predictor of histologic inflammation with excellent performance in identifying active histologic inflammation (ROC area under the curve = 0.966). DISCUSSION: MRE-based scores for histologic fibrosis and inflammation may assist in the characterization of CD stenosis and enable development of fibrosis-targeted therapies and clinical treatment of stenotic patients.


Assuntos
Doença de Crohn , Constrição Patológica/diagnóstico por imagem , Doença de Crohn/complicações , Doença de Crohn/diagnóstico por imagem , Fibrose , Humanos , Inflamação/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Estudos Prospectivos
17.
Eur Radiol Exp ; 6(1): 30, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35854186

RESUMO

BACKGROUND: We investigated whether features derived from texture analysis (TA) can distinguish breast density (BD) in spiral photon-counting breast computed tomography (PC-BCT). METHODS: In this retrospective single-centre study, we analysed 10,000 images from 400 PC-BCT examinations of 200 patients. Images were categorised into four-level density scale (a-d) using Breast Imaging Reporting and Data System (BI-RADS)-like criteria. After manual definition of representative regions of interest, 19 texture features (TFs) were calculated to analyse the voxel grey-level distribution in the included image area. ANOVA, cluster analysis, and multinomial logistic regression statistics were used. A human readout then was performed on a subset of 60 images to evaluate the reliability of the proposed feature set. RESULTS: Of the 19 TFs, 4 first-order features and 7 second-order features showed significant correlation with BD and were selected for further analysis. Multinomial logistic regression revealed an overall accuracy of 80% for BD assessment. The majority of TFs systematically increased or decreased with BD. Skewness (rho -0.81), as a first-order feature, and grey-level nonuniformity (GLN, -0.59), as a second-order feature, showed the strongest correlation with BD, independently of other TFs. Mean skewness and GLN decreased linearly from density a to d. Run-length nonuniformity (RLN), as a second-order feature, showed moderate correlation with BD, but resulted in redundant being correlated with GLN. All other TFs showed only weak correlation with BD (range -0.49 to 0.49, p < 0.001) and were neglected. CONCLUSION: TA of PC-BCT images might be a useful approach to assess BD and may serve as an observer-independent tool.


Assuntos
Algoritmos , Densidade da Mama , Humanos , Reprodutibilidade dos Testes , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
18.
Diagnostics (Basel) ; 12(6)2022 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-35741157

RESUMO

The purpose of this study was to determine the feasibility of a deep convolutional neural network (dCNN) to accurately detect abnormal axillary lymph nodes on mammograms. In this retrospective study, 107 mammographic images in mediolateral oblique projection from 74 patients were labeled to three classes: (1) "breast tissue", (2) "benign lymph nodes", and (3) "suspicious lymph nodes". Following data preprocessing, a dCNN model was trained and validated with 5385 images. Subsequently, the trained dCNN was tested on a "real-world" dataset and the performance compared to human readers. For visualization, colored probability maps of the classification were calculated using a sliding window approach. The accuracy was 98% for the training and 99% for the validation set. Confusion matrices of the "real-world" dataset for the three classes with radiological reports as ground truth yielded an accuracy of 98.51% for breast tissue, 98.63% for benign lymph nodes, and 95.96% for suspicious lymph nodes. Intraclass correlation of the dCNN and the readers was excellent (0.98), and Kappa values were nearly perfect (0.93-0.97). The colormaps successfully detected abnormal lymph nodes with excellent image quality. In this proof-of-principle study in a small patient cohort from a single institution, we found that deep convolutional networks can be trained with high accuracy and reliability to detect abnormal axillary lymph nodes on mammograms.

19.
Med Phys ; 49(6): 3729-3748, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35257395

RESUMO

PURPOSE: Breast cancer is the most common malignancy in women. Unfortunately, current breast imaging techniques all suffer from certain limitations: they are either not fully three dimensional, have an insufficient resolution or low soft-tissue contrast. Grating interferometry breast computed tomography (GI-BCT) is a promising X-ray phase contrast modality that could overcome these limitations by offering high soft-tissue contrast and excellent three-dimensional resolution. To enable the transition of this technology to clinical practice, dedicated data-processing algorithms must be developed in order to effectively retrieve the signals of interest from the measured raw data. METHODS: This article proposes a novel denoising algorithm that can cope with the high-noise amplitudes and heteroscedasticity which arise in GI-BCT when operated in a low-dose regime to effectively regularize the ill-conditioned GI-BCT inverse problem. We present a data-driven algorithm called INSIDEnet, which combines different ideas such as multiscale image processing, transform-domain filtering, transform learning, and explicit orthogonality to build an Interpretable NonexpanSIve Data-Efficient network (INSIDEnet). RESULTS: We apply the method to simulated breast phantom datasets and to real data acquired on a GI-BCT prototype and show that the proposed algorithm outperforms traditional state-of-the-art filters and is competitive with deep neural networks. The strong inductive bias given by the proposed model's architecture allows to reliably train the algorithm with very limited data while providing high model interpretability, thus offering a great advantage over classical convolutional neural networks (CNNs). CONCLUSIONS: The proposed INSIDEnet is highly data-efficient, interpretable, and outperforms state-of-the-art CNNs when trained on very limited training data. We expect the proposed method to become an important tool as part of a dedicated plug-and-play GI-BCT reconstruction framework, needed to translate this promising technology to the clinics.


Assuntos
Processamento de Imagem Assistida por Computador , Tomografia Computadorizada por Raios X , Algoritmos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Interferometria , Imagens de Fantasmas , Razão Sinal-Ruído , Tórax , Tomografia Computadorizada por Raios X/métodos
20.
Lymphat Res Biol ; 20(6): 659-664, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35230197

RESUMO

Background: In lymphatic reconstructive surgery, visualization of lymph vessels is of paramount importance. Indocyanine green (ICG) lymphography is the current gold standard in preoperative lymphatic imaging. However, visualization of lymph vessels is often limited by an overlying dermal backflow of ICG, becoming particularly prominent in advanced lymphedema stages. Multispectral optoacoustic tomography (MSOT) has recently been introduced as a promising noninvasive tool for lymphatic imaging. Methods and Results: A single-center proof-of-concept study with a prospective observational design was conducted at the Department of Plastic Surgery and Hand Surgery of the University Hospital Zurich. Between February 2021 and August 2021, seven patients with different grades of lymphedema were analyzed by the MSOT Acuity system before undergoing lymphovenous anastomosis (LVA). Conventional ICG lymphography served as comparison. MSOT succeeded to accurately depict blood and lymphatic vessels at different locations in six patients, including areas of dermal backflow. The MSOT signal of lymph vessels further correlated well with their macroscopic appearance. Conclusion: We could successfully visualize lymphatic vessels in patients with lymphedema by MSOT and establish the new method for preoperative mapping and selection of incision sites for LVA. Regardless of dermal backflow patterns, MSOT proved to be a valuable approach for identifying and clearly discerning between lymphatic and blood vessels.


Assuntos
Vasos Linfáticos , Linfedema , Humanos , Anastomose Cirúrgica/métodos , Verde de Indocianina , Vasos Linfáticos/cirurgia , Linfedema/cirurgia , Linfografia/métodos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...