Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(1): e17199, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38018020

RESUMO

Identifying genetic conservation units (CUs) in threatened species is critical for the preservation of adaptive capacity and evolutionary potential in the face of climate change. However, delineating CUs in highly mobile species remains a challenge due to high rates of gene flow and genetic signatures of isolation by distance. Even when CUs are delineated in highly mobile species, the CUs often lack key biological information about what populations have the most conservation need to guide management decisions. Here we implement a framework for CU identification in the Canada Warbler (Cardellina canadensis), a migratory bird species of conservation concern, and then integrate demographic modelling and genomic offset to guide conservation decisions. We find that patterns of whole genome genetic variation in this highly mobile species are primarily driven by putative adaptive variation. Identification of CUs across the breeding range revealed that Canada Warblers fall into two evolutionarily significant units (ESU), and three putative adaptive units (AUs) in the South, East, and Northwest. Quantification of genomic offset, a metric of genetic changes necessary to maintain current gene-environment relationships, revealed significant spatial variation in climate vulnerability, with the Northwestern AU being identified as the most vulnerable to future climate change. Alternatively, quantification of past population trends within each AU revealed the steepest population declines have occurred within the Eastern AU. Overall, we illustrate that genomics-informed CUs provide a strong foundation for identifying current and future regional threats that can be used to inform management strategies for a highly mobile species in a rapidly changing world.


Assuntos
Conservação dos Recursos Naturais , Passeriformes , Animais , Espécies em Perigo de Extinção , Genômica , Evolução Biológica , Mudança Climática
2.
Science ; 382(6676): 1282-1286, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38096373

RESUMO

The white-bellied pangolin (Phataginus tricuspis) is the world's most trafficked mammal and is at risk of extinction. Reducing the illegal wildlife trade requires an understanding of its origins. Using a genomic approach for tracing confiscations and analyzing 111 samples collected from known geographic localities in Africa and 643 seized scales from Asia between 2012 and 2018, we found that poaching pressures shifted over time from West to Central Africa. Recently, Cameroon's southern border has emerged as a site of intense poaching. Using data from seizures representing nearly 1 million African pangolins, we identified Nigeria as one important hub for trafficking, where scales are amassed and transshipped to markets in Asia. This origin-to-destination approach offers new opportunities to disrupt the illegal wildlife trade and to guide anti-trafficking measures.


Assuntos
Crime , Extinção Biológica , Genômica , Pangolins , Comércio de Vida Silvestre , Animais , Ásia , Genoma , Nigéria , Crime/prevenção & controle , Camarões
3.
Evol Appl ; 16(12): 1889-1900, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38143900

RESUMO

Migration is driven by a combination of environmental and genetic factors, but many questions remain about those drivers. Potential interactions between genetic and environmental variants associated with different migratory phenotypes are rarely the focus of study. We pair low coverage whole genome resequencing with a de novo genome assembly to examine population structure, inbreeding, and the environmental factors associated with genetic differentiation between migratory and resident breeding phenotypes in a species of conservation concern, the western burrowing owl (Athene cunicularia hypugaea). Our analyses reveal a dichotomy in gene flow depending on whether the population is resident or migratory, with the former being genetically structured and the latter exhibiting no signs of structure. Among resident populations, we observed significantly higher genetic differentiation, significant isolation-by-distance, and significantly elevated inbreeding. Among migratory breeding groups, on the other hand, we observed lower genetic differentiation, no isolation-by-distance, and substantially lower inbreeding. Using genotype-environment association analysis, we find significant evidence for relationships between migratory phenotypes (i.e., migrant versus resident) and environmental variation associated with cold temperatures during the winter and barren, open habitats. In the regions of the genome most differentiated between migrants and residents, we find significant enrichment for genes associated with the metabolism of fats. This may be linked to the increased pressure on migrants to process and store fats more efficiently in preparation for and during migration. Our results provide a significant contribution toward understanding the evolution of migratory behavior and vital insight into ongoing conservation and management efforts for the western burrowing owl.

4.
Mol Ecol ; 32(20): 5528-5540, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37706673

RESUMO

Understanding the geographic linkages among populations across the annual cycle is an essential component for understanding the ecology and evolution of migratory species and for facilitating their effective conservation. While genetic markers have been widely applied to describe migratory connections, the rapid development of new sequencing methods, such as low-coverage whole genome sequencing (lcWGS), provides new opportunities for improved estimates of migratory connectivity. Here, we use lcWGS to identify fine-scale population structure in a widespread songbird, the American Redstart (Setophaga ruticilla), and accurately assign individuals to genetically distinct breeding populations. Assignment of individuals from the nonbreeding range reveals population-specific patterns of varying migratory connectivity. By combining migratory connectivity results with demographic analysis of population abundance and trends, we consider full annual cycle conservation strategies for preserving numbers of individuals and genetic diversity. Notably, we highlight the importance of the Northern Temperate-Greater Antilles migratory population as containing the largest proportion of individuals in the species. Finally, we highlight valuable considerations for other population assignment studies aimed at using lcWGS. Our results have broad implications for improving our understanding of the ecology and evolution of migratory species through conservation genomics approaches.


Assuntos
Passeriformes , Aves Canoras , Humanos , Animais , Estados Unidos , Migração Animal , Passeriformes/genética , Aves Canoras/genética , Sequenciamento Completo do Genoma , Região do Caribe
5.
PLoS One ; 18(9): e0289949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672506

RESUMO

Renewable energy production and development will drastically affect how we meet global energy demands, while simultaneously reducing the impact of climate change. Although the possible effects of renewable energy production (mainly from solar- and wind-energy facilities) on wildlife have been explored, knowledge gaps still exist, and collecting data from wildlife remains (when negative interactions occur) at energy installations can act as a first step regarding the study of species and communities interacting with facilities. In the case of avian species, samples can be collected relatively easily (as compared to other sampling methods), but may only be able to be identified when morphological characteristics are diagnostic for a species. Therefore, many samples that appear as partial remains, or "feather spots"-known to be of avian origin but not readily assignable to species via morphology-may remain unidentified, reducing the efficiency of sample collection and the accuracy of patterns observed. To obtain data from these samples and ensure their identification and inclusion in subsequent analyses, we applied, for the first time, a DNA barcoding approach that uses mitochondrial genetic data to identify unknown avian samples collected at solar facilities to species. We also verified and compared identifications obtained by our genetic method to traditional morphological identifications using a blind test, and discuss discrepancies observed. Our results suggest that this genetic tool can be used to verify, correct, and supplement identifications made in the field and can produce data that allow accurate comparisons of avian interactions across facilities, locations, or technology types. We recommend implementing this genetic approach to ensure that unknown samples collected are efficiently identified and contribute to a better understanding of wildlife impacts at renewable energy projects.


Assuntos
Energia Solar , Animais , Energia Renovável , Animais Selvagens , Aves/genética , Mudança Climática
6.
Mol Ecol ; 32(19): 5228-5240, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37610278

RESUMO

The accelerating pace of global biodiversity loss is exacerbated by habitat fragmentation and subsequent inbreeding in small populations. To address this problem, conservation practitioners often turn to assisted breeding programmes with the aim of enhancing genetic diversity in declining populations. Although genomic information is infrequently included in these efforts, it has the potential to significantly enhance the success of such programmes. In this study, we showcase the value of genomic approaches for increasing genetic diversity in assisted breeding efforts, specifically focusing on a highly inbred population of Western burrowing owls. To maximize genetic diversity in the resulting offspring, we begin by creating an optimal pairing decision tree based on sex, kinship and patterns of homozygosity across the genome. To evaluate the effectiveness of our strategy, we compare genetic diversity, brood size and nestling success rates between optimized and non-optimized pairs. Additionally, we leverage recently discovered correlations between telomere length and fitness across species to investigate whether genomic optimization could have long-term fitness benefits. Our results indicate that pairing individuals with contrasting patterns of homozygosity across the genome is an effective way to increase genetic diversity in offspring. Although short-term field-based metrics of success did not differ significantly between optimized and non-optimized pairs, offspring from optimized pairs had significantly longer telomeres, suggesting that genetic optimization can help reduce the risk of inbreeding depression. These findings underscore the importance of genomic tools for informing efforts to preserve the adaptive potential of small, inbred populations at risk of further decline.


Assuntos
Variação Genética , Endogamia , Humanos , Animais , Variação Genética/genética , Cruzamento , Genoma , Genômica
7.
Ecol Evol ; 13(2): e9769, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36744079

RESUMO

Technological advances in migratory tracking tools have revealed a remarkable diversity in migratory patterns. One such pattern is leapfrog migration, where individuals that breed further north migrate to locations further south. Here, we analyzed migration patterns in the Painted Bunting (Passerina ciris) using a genetic-based approach. We started by mapping patterns of genetic variation across geographic space (called a genoscape) using 386 individuals from 25 populations across the breeding range. We then genotyped an additional 230 samples from 31 migration stopover locations and 178 samples from 16 wintering locations to map patterns of migratory connectivity. Our analyses of genetic variation across the breeding range show the existence of four genetically distinct groups within the species: Eastern, Southwestern, Louisiana, and Central groups. Subsequent assignment of migrating and wintering birds to genetic groups illustrated that birds from the Central group migrated during the fall via western Mexico or southern Texas, spent the winter from northeastern Mexico to Panama, and migrated north via the Gulf Coast of Mexico. While Louisiana birds overlapped with Central birds on their spring migratory routes along the Gulf Coast, we found that Louisiana birds had a more restricted wintering distribution in the Yucatan Peninsula and Central America. Further estimation of the straight-line distance from the predicted breeding location to the wintering location revealed that individuals sampled at lower winter latitudes traveled to greater distances (i.e., the predicted breeding area was further north; p > .001), confirming that these species exhibit a leapfrog migration pattern. Overall, these results demonstrate the utility of a genoscape-based approach for identifying range-wide patterns of migratory connectivity such as leapfrog migration with a high degree of clarity.

8.
Sci Rep ; 13(1): 814, 2023 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-36646769

RESUMO

The ability of animals to sync the timing and location of molting (the replacement of hair, skin, exoskeletons or feathers) with peaks in resource availability has important implications for their ecology and evolution. In migratory birds, the timing and location of pre-migratory feather molting, a period when feathers are shed and replaced with newer, more aerodynamic feathers, can vary within and between species. While hypotheses to explain the evolution of intraspecific variation in the timing and location of molt have been proposed, little is known about the genetic basis of this trait or the specific environmental drivers that may result in natural selection for distinct molting phenotypes. Here we take advantage of intraspecific variation in the timing and location of molt in the iconic songbird, the Painted Bunting (Passerina ciris) to investigate the genetic and ecological drivers of distinct molting phenotypes. Specifically, we use genome-wide genetic sequencing in combination with stable isotope analysis to determine population genetic structure and molting phenotype across thirteen breeding sites. We then use genome-wide association analysis (GWAS) to identify a suite of genes associated with molting and pair this with gene-environment association analysis (GEA) to investigate potential environmental drivers of genetic variation in this trait. Associations between genetic variation in molt-linked genes and the environment are further tested via targeted SNP genotyping in 25 additional breeding populations across the range. Together, our integrative analysis suggests that molting is in part regulated by genes linked to feather development and structure (GLI2 and CSPG4) and that genetic variation in these genes is associated with seasonal variation in precipitation and aridity. Overall, this work provides important insights into the genetic basis and potential selective forces behind phenotypic variation in what is arguably one of the most important fitness-linked traits in a migratory bird.


Assuntos
Passeriformes , Aves Canoras , Animais , Muda/genética , Estudo de Associação Genômica Ampla , Aves Canoras/genética , Passeriformes/genética , Plumas/química , Estações do Ano
9.
Evol Appl ; 15(9): 1390-1407, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36187181

RESUMO

Identifying areas of high evolutionary potential is a judicious strategy for developing conservation priorities in the face of environmental change. For wide-ranging species occupying heterogeneous environments, the evolutionary forces that shape distinct populations can vary spatially. Here, we investigate patterns of genomic variation and genotype-environment associations in the hermit thrush (Catharus guttatus), a North American songbird, at broad (across the breeding range) and narrow spatial scales (at a hybrid zone). We begin by building a genoscape or map of genetic variation across the breeding range and find five distinct genetic clusters within the species, with the greatest variation occurring in the western portion of the range. Genotype-environment association analyses indicate higher allelic turnover in the west than in the east, with measures of temperature surfacing as key predictors of putative adaptive genomic variation rangewide. Since broad patterns detected across a species' range represent the aggregate of many locally adapted populations, we investigate whether our broadscale analysis is consistent with a finer scale analysis. We find that top rangewide temperature-associated loci vary in their clinal patterns (e.g., steep clines vs. fixed allele frequencies) across a hybrid zone in British Columbia, suggesting that the environmental predictors and the associated candidate loci identified in the rangewide analysis are of variable importance in this particular region. However, two candidate loci exhibit strong concordance with the temperature gradient in British Columbia, suggesting a potential role for temperature-related barriers to gene flow and/or temperature-driven ecological selection in maintaining putative local adaptation. This study demonstrates how patterns identified at the broad (macrogeographic) scale can be validated by investigating genotype-environment correlations at the local (microgeographic) scale. Furthermore, our results highlight the importance of considering the spatial distribution of putative adaptive variation when assessing population-level sensitivity to climate change and other stressors.

10.
Proc Biol Sci ; 289(1974): 20212507, 2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35506230

RESUMO

Seasonal migration is a dynamic natural phenomenon that allows organisms to exploit favourable habitats across the annual cycle. While the morphological, physiological and behavioural changes associated with migratory behaviour are well characterized, the genetic basis of migration and its link to endogenous biological time-keeping pathways are poorly understood. Historically, genome-wide research has focused on genes of large effect, whereas many genes of small effect may work together to regulate complex traits like migratory behaviour. Here, we explicitly relax stringent outlier detection thresholds and, as a result, discover how multiple biological time-keeping genes are important to migratory timing in an iconic raptor species, the American kestrel (Falco sparverius). To validate the role of candidate loci in migratory timing, we genotyped kestrels captured across autumn migration and found significant associations between migratory timing and genetic variation in metabolic and light-input pathway genes that modulate biological clocks (top1, phlpp1, cpne4 and peak1). Further, we demonstrate that migrating individuals originated from a single panmictic source population, suggesting the existence of distinct early and late migratory genotypes (i.e. chronotypes). Overall, our results provide empirical support for the existence of a within-population-level polymorphism in genes underlying migratory timing in a diurnally migrating raptor.


Assuntos
Falconiformes , Aves Predatórias , Migração Animal/fisiologia , Animais , Falconiformes/genética , Humanos , Polimorfismo Genético , Aves Predatórias/genética , Estações do Ano
11.
J Evol Biol ; 33(5): 727-733, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32069366

RESUMO

Within hybrid zones of socially monogamous species, the number of mating opportunities with a conspecific can be limited. As a consequence, individuals may mate with a heterospecific (social) partner despite possible fitness costs to their hybrid offspring. Extra-pair copulations with a conspecific may thus arise as a possible post hoc strategy to reduce the costs of hybridization. We here assessed the rate of extra-pair paternity in the hybrid zone between all-black carrion crows (Corvus (corone) corone) and grey hooded crows (C. (c.) cornix) and tested whether extra-pair paternity (EPP) was more likely in broods where parents differed in plumage colour. The proportion of broods with at least one extra-pair offspring and the proportion of extra-pair offspring were low overall (6.98% and 2.90%, respectively) with no evidence of hybrid broods having higher EPP rates than purebred nests.


Assuntos
Corvos/genética , Hibridização Genética , Comportamento Sexual Animal , Animais , Europa (Continente) , Feminino , Masculino , Paternidade
12.
Nat Ecol Evol ; 3(4): 570-576, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30911146

RESUMO

The evolution of genetic barriers opposing interspecific gene flow is key to the origin of new species. Drawing from information on over 400 admixed genomes sourced from replicate transects across the European hybrid zone between all-black carrion crows and grey-coated hooded crows, we decipher the interplay between phenotypic divergence and selection at the molecular level. Over 68% of plumage variation was explained by epistasis between the gene NDP and a ~2.8-megabase region on chromosome 18 with suppressed recombination. Both pigmentation loci showed evidence for divergent selection resisting introgression. This study reveals how few, large-effect loci can govern prezygotic isolation and shield phenotypic divergence from gene flow.


Assuntos
Variação Biológica da População , Corvos/genética , Variação Genética , Animais , Epistasia Genética , Fluxo Gênico , Hibridização Genética , Mutação , Fenótipo
13.
Proc Biol Sci ; 284(1849)2017 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-28202815

RESUMO

Closely related species may show similar levels of genetic diversity in homologous regions of the genome owing to shared ancestral variation still segregating in the extant species. However, after completion of lineage sorting, such covariation is not necessarily expected. On the other hand, if the processes that govern genetic diversity are conserved, diversity may potentially covary even among distantly related species. We mapped regions of conserved synteny between the genomes of two divergent bird species-collared flycatcher and hooded crow-and identified more than 600 Mb of homologous regions (66% of the genome). From analyses of whole-genome resequencing data in large population samples of both species we found nucleotide diversity in 200 kb windows to be well correlated (Spearman's ρ = 0.407). The correlation remained highly similar after excluding coding sequences. To explain this covariation, we suggest that a stable avian karyotype and a conserved landscape of recombination rate variation render the diversity-reducing effects of linked selection similar in divergent bird lineages. Principal component regression analysis of several potential explanatory variables driving heterogeneity in flycatcher diversity levels revealed the strongest effects from recombination rate variation and density of coding sequence targets for selection, consistent with linked selection. It is also possible that a stable karyotype is associated with a conserved genomic mutation environment contributing to covariation in diversity levels between lineages. Our observations imply that genetic diversity is to some extent predictable.


Assuntos
Corvos/genética , Genoma , Nucleotídeos/genética , Aves Canoras/genética , Animais , Evolução Molecular , Cariótipo , Recombinação Genética , Sintenia
14.
Nat Commun ; 7: 13195, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796282

RESUMO

Uncovering the genetic basis of species diversification is a central goal in evolutionary biology. Yet, the link between the accumulation of genomic changes during population divergence and the evolutionary forces promoting reproductive isolation is poorly understood. Here, we analysed 124 genomes of crow populations with various degrees of genome-wide differentiation, with parallelism of a sexually selected plumage phenotype, and ongoing hybridization. Overall, heterogeneity in genetic differentiation along the genome was best explained by linked selection exposed on a shared genome architecture. Superimposed on this common background, we identified genomic regions with signatures of selection specific to independent phenotypic contact zones. Candidate pigmentation genes with evidence for divergent selection were only partly shared, suggesting context-dependent selection on a multigenic trait architecture and parallelism by pathway rather than by repeated single-gene effects. This study provides insight into how various forms of selection shape genome-wide patterns of genomic differentiation as populations diverge.


Assuntos
Corvos/genética , Fluxo Gênico , Genoma , Isolamento Reprodutivo , Animais , Feminino , Especiação Genética , Geografia , Hibridização Genética , Masculino , Hibridização de Ácido Nucleico , Fenótipo , Pigmentação , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional
15.
Evolution ; 69(5): 1219-31, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25824960

RESUMO

It is not known how environmental pressures and sexual selection interact to influence the evolution of extravagant male traits. Sexual and natural selection are often viewed as antagonistic forces shaping the evolution of visual signals, where conspicuousness is favored by sexual selection and crypsis is favored by natural selection. Although typically investigated independently, the interaction between natural and sexual selection remains poorly understood. Here, we investigate whether sexual dichromatism evolves stochastically, independent from, or in concert with habitat use in darters, a species-rich lineage of North American freshwater fish. We find the evolution of sexual dichromatism is coupled to habitat use in darter species. Comparative analyses reveal that mid-water darter lineages exhibit a narrow distribution of dichromatism trait space surrounding a low optimum, suggesting a constraint imposed on the evolution of dichromatism, potentially through predator-mediated selection. Alternatively, the transition to benthic habitats coincides with greater variability in the levels of dichromatism that surround a higher optimum, likely due to relaxation of the predator-mediated selection and heterogeneous microhabitat dependent selection regimes. These results suggest a complex interaction of sexual selection with potentially two mechanisms of natural selection, predation and sensory drive, that influence the evolution of diverse male nuptial coloration in darters.


Assuntos
Ecossistema , Evolução Molecular , Percas/genética , Caracteres Sexuais , Pigmentação da Pele/genética , Animais , Feminino , Masculino , Preferência de Acasalamento Animal , Percas/fisiologia , Comportamento Predatório , Seleção Genética
16.
Mol Ecol ; 22(21): 5397-417, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24118264

RESUMO

The alteration in palaeodrainage river connections has shaped patterns of speciation, genetic diversity and the geographical distribution of the species-rich freshwater fauna of North America. The integration of ancestral range reconstruction methods and divergence time estimates provides an opportunity to infer palaeodrainage connectivity and test alternative palaeodrainage hypotheses. Members of the Orangethroat Darter clade, Ceasia, are endemic to southeastern North America and occur north and south of the Pleistocene glacial front, a distributional pattern that makes this clade of closely related species an ideal system to investigate the number and location of glacial refugia and compare alternative hypotheses regarding the proposed evolution of the Teays-Mahomet palaeodrainage. This study utilized time-calibrated mitochondrial and nuclear gene phylogenies and present-day geographical distributions to investigate hypothesized Teays-Mahomet River connections through time using a dispersal-extinction-cladogenesis (DEC) framework. Results of DEC ancestral area reconstructions indicate that the Teays-Mahomet River was a key dispersal route between disjunct highland regions connecting the Mississippi River tributaries to the Old-Ohio Drainage minimally at two separate occasions during the Pleistocene. There was a dynamic interplay between palaeodrainage connections through time and postglacial range expansion from three glacial refugia that shaped the current genetic structure and geographical distributions of the species that comprise Ceasia.


Assuntos
Especiação Genética , Percas/classificação , Filogenia , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Geografia , Modelos Genéticos , Dados de Sequência Molecular , América do Norte , Percas/genética , Filogeografia , Rios , Análise de Sequência de DNA
17.
Genetica ; 141(1-3): 75-88, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23443763

RESUMO

Hybrid zones have long intrigued evolutionary biologists and provide a natural laboratory to explore the evolution of reproductive isolation (speciation). Molecular characterization of hybrid zone dynamics can provide insight into the strength of reproductive isolation as well as the underlying evolutionary processes shaping gene flow. Approximately one-third of darter species naturally hybridize making this species-rich North American freshwater teleost fish clade an ideal system to investigate the extent and direction of hybridization. The objective of this study was to use diagnostic microsatellite markers to calculate genetic hybrid index scores of two syntopic, but distantly related darter species, Etheostoma bison and Etheostoma caeruleum. A combination of hybrid index scores, assignment tests, and mitochondrial haplotype profiles uncovered mixed ancestry in approximately 6 % of sampled adult individuals, supporting contemporaneous hybridization that was previously undocumented in E. bison. Moreover, hybrids were not limited to the F1 generation, but encompassed the entire suite of hybrid categories (F1, F2 and backcross hybrids). The low number of hybrids assigned to each hybrid category represents a bimodal hybrid zone, suggesting reproductive isolation is strong (but incomplete) and also advocates for the ability of hybrids to produce second-generation hybrids and backcross into both parental species, mediating introgression across species boundaries. To this end, cytonuclear profiles of the sampled parental species and hybrids were consistent with bidirectional gene flow, although there was an overall trend of asymmetric hybridization between E. caeruleum females and E. bison males. The spatiotemporal variation in hybridization rates and resulting cytonuclear patterns expanded on in this study provide a comparative genetic framework on which future studies can begin to elucidate the underlying processes that not only generate a mosaic hybrid zone, but maintain the distinctness of species in the face of gene flow.


Assuntos
Quimera/genética , Ecossistema , Especiação Genética , Percas/genética , Animais , DNA Mitocondrial/genética , Feminino , Fluxo Gênico , Haplótipos , Endogamia , Masculino , Repetições de Microssatélites/genética , Mid-Atlantic Region , População/genética , Isolamento Reprodutivo , Rios
18.
Syst Biol ; 60(5): 565-95, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21775340

RESUMO

Discussions aimed at resolution of the Tree of Life are most often focused on the interrelationships of major organismal lineages. In this study, we focus on the resolution of some of the most apical branches in the Tree of Life through exploration of the phylogenetic relationships of darters, a species-rich clade of North American freshwater fishes. With a near-complete taxon sampling of close to 250 species, we aim to investigate strategies for efficient multilocus data sampling and the estimation of divergence times using relaxed-clock methods when a clade lacks a fossil record. Our phylogenetic data set comprises a single mitochondrial DNA (mtDNA) gene and two nuclear genes sampled from 245 of the 248 darter species. This dense sampling allows us to determine if a modest amount of nuclear DNA sequence data can resolve relationships among closely related animal species. Darters lack a fossil record to provide age calibration priors in relaxed-clock analyses. Therefore, we use a near-complete species-sampled phylogeny of the perciform clade Centrarchidae, which has a rich fossil record, to assess two distinct strategies of external calibration in relaxed-clock divergence time estimates of darters: using ages inferred from the fossil record and molecular evolutionary rate estimates. Comparison of Bayesian phylogenies inferred from mtDNA and nuclear genes reveals that heterospecific mtDNA is present in approximately 12.5% of all darter species. We identify three patterns of mtDNA introgression in darters: proximal mtDNA transfer, which involves the transfer of mtDNA among extant and sympatric darter species, indeterminate introgression, which involves the transfer of mtDNA from a lineage that cannot be confidently identified because the introgressed haplotypes are not clearly referable to mtDNA haplotypes in any recognized species, and deep introgression, which is characterized by species diversification within a recipient clade subsequent to the transfer of heterospecific mtDNA. The results of our analyses indicate that DNA sequences sampled from single-copy nuclear genes can provide appreciable phylogenetic resolution for closely related animal species. A well-resolved near-complete species-sampled phylogeny of darters was estimated with Bayesian methods using a concatenated mtDNA and nuclear gene data set with all identified heterospecific mtDNA haplotypes treated as missing data. The relaxed-clock analyses resulted in very similar posterior age estimates across the three sampled genes and methods of calibration and therefore offer a viable strategy for estimating divergence times for clades that lack a fossil record. In addition, an informative rank-free clade-based classification of darters that preserves the rich history of nomenclature in the group and provides formal taxonomic communication of darter clades was constructed using the mtDNA and nuclear gene phylogeny. On the whole, the appeal of mtDNA for phylogeny inference among closely related animal species is diminished by the observations of extensive mtDNA introgression and by finding appreciable phylogenetic signal in a modest sampling of nuclear genes in our phylogenetic analyses of darters.


Assuntos
Evolução Molecular , Percas/classificação , Percas/genética , Animais , Teorema de Bayes , Núcleo Celular/genética , Grupo dos Citocromos b/genética , DNA Mitocondrial/genética , Éxons/genética , Genes RAG-1/genética , Haplótipos , Hibridização Genética , Íntrons/genética , Dados de Sequência Molecular , Perciformes/classificação , Perciformes/genética , Filogenia , Proteínas Ribossômicas/genética , Análise de Sequência de DNA
19.
Syst Biol ; 58(1): 114-29, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20525572

RESUMO

Phylogenies of closely related animal species are often inferred using mitochondrial DNA (mtDNA) gene sequences. The accuracy of mtDNA gene trees is compromised through hybridization that leads to introgression of mitochondrial genomes. Using DNA sequences from 6 single-copy nuclear genes and 2 regions of the mitochondrial genome, we investigated the temporal and geographic signature of mitochondrial and nuclear introgression in the Etheostoma spectabile darter clade. Phylogenetic analyses of the nuclear genes result in the monophyly of the E. spectabile clade; however, with respect to sampled specimens of 5 species (Etheostoma fragi, Etheostoma uniporum, Etheostoma pulchellum, Etheostoma burri, and E. spectabile), the mitochondrial phylogeny is inconsistent with E. spectabile clade monophyly. Etheostoma uniporum and E. fragi are both fixed for heterospecific mitochondrial genomes. Limited nuclear introgression is restricted to E. uniporum. Our analyses show that the pattern of introgression is consistently asymmetric, with movement of heterospecific mitochondrial haplotypes and nuclear alleles into E. spectabile clade species; introgressive hybridization spans broad temporal scales; and introgression is restricted to species and populations in the Ozarks. The introgressed mitochondrial genome observed in E. fragi has an obscure phylogenetic placement among darters, an ancient age, and is possibly a mitochondrial fossil from an Etheostoma species that has subsequently gone extinct. These results indicate that introgression, both ancient and more contemporaneous, characterizes the history of diversification in the E. spectabile species clade and may be relatively common among clades comprising the species-rich North American freshwater fauna.


Assuntos
DNA Mitocondrial/genética , Percas/classificação , Percas/genética , Animais , América do Norte , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...