Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 197: 115730, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37918142

RESUMO

Few studies exist on concentration and internal distribution of Rare Earth Elements (REEs) in marine fishes. REEs organotropism was determined in common sole (Solea solea) from the West Gironde Mud Patch (WGMP; N-E Atlantic Coast, France). The highest ∑REEs concentrations occurred in liver (213 ± 49.9 µg kg-1 DW) and gills (119 ± 77.5 µg kg-1 DW) followed by kidneys (57.7 ± 25.5 µg kg-1 DW), whereas the lowest levels were in muscles (4.53 ± 1.36 µg kg-1 DW) of Solea solea. No significant age- or sex-related differences were observed. The organotropism varied among groups of REEs. Light and heavy REEs preferentially accumulated in liver and gills, respectively. All considered organs showed different normalized REEs patterns, suggesting differences in internal distribution processes between organs. Further work should address: (1) baseline levels worldwide, and (2) factors controlling uptake and organ-specific concentration of REEs.


Assuntos
Linguados , Metais Terras Raras , Animais , Metais Terras Raras/análise , Brânquias/química , Fígado/química , França
2.
Mar Environ Res ; 176: 105594, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35279515

RESUMO

Despite the effective remediation efforts following the end of the metallurgic activity thirty years ago upstream the Lot River watershed, the levels of cadmium (Cd) accumulated in wild oysters from the downstream Gironde Estuary still exceed nowadays the admissible human consumption limit (5 mg/kg, d.w.). The main goal of this work is to quantify the role of sediments as long-term intra-estuarine sources or sinks of Cd and the transport of this contaminant towards the estuary mouth taking as case study the example of the highly turbid Gironde Estuary. The original estimation for the annual net fluxes of the suspended particulate matter ( [Formula: see text] and particulate Cd ( [Formula: see text] ) presented in this work between 1990 and 2020 indicates that 80% of the Cd discharged into the ocean is in dissolved form (Cdd). The values of [Formula: see text] vary proportionally to those of [Formula: see text] and ranged between 0.1 and 1.4 t/y, with a ten-year average decreasing from 0.8 to 0.6 t/y for the past 30 years. The differences between ten-year total (Cdp + Cdd) gross and net fluxes show that Cd has effectively been stored in estuarine sediments. This Cd storage was of about 43, 22 and 13 t for the 1990s, 2000s and 2010s, respectively. However, during years of low gross fluxes, estuarine sediments act as additional, secondary sources of bio-available/dissolved Cd into the water column, potentially relating to the continued observations of high Cd concentrations in wild oysters at the estuary mouth. In addition to the natural solubility of Cdp along the salinity and turbidity gradients of the estuary, natural and anthropogenic remobilization of bottom sediment particles further contribute to its mobilization from the particle phase, along with other numerous inorganic/organic pollutants. The mass balances presented in this work could support a new sediment management policy potentially more beneficial to the estuarine ecosystem.


Assuntos
Ostreidae , Poluentes Químicos da Água , Animais , Cádmio , Descontaminação , Ecossistema , Monitoramento Ambiental , Estuários , Sedimentos Geológicos , Humanos , Ostreidae/metabolismo , Poluentes Químicos da Água/análise
3.
Arch Environ Contam Toxicol ; 82(2): 206-226, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33587166

RESUMO

High temporal resolution sampling of runoff (15 samples/4 h) and river water (24 samples/24 h) was performed during a major rainstorm (41 mm/4 h) in the Bordeaux Metropole, after a dry and high vehicle-density period. Runoff was sampled at the outlet of one collector draining Northern Bordeaux Highway (NBH; 80,000-93,000 vehicles/day) and river water in the downstream Jalle River. The studied metals, including priority and emergent (Rare Earth Elements [REEs]) contaminants, showed major temporal and spatial variations in the dissolved and particulate concentrations. Hierarchical cluster analyses distinguished metal groups, reflecting different: (i) sources (i.e., automotive traffic: Zn-Cu-Ce and wastewater treatment plant: Cd-Ag-Gd) and/or (ii) processes (i.e., groundwater dilution by rainwater and sorption processes). The contribution of the particulate fraction to total metal fluxes was predominant in the NBH collector (except for Sr and Mo) and highly variable in the Jalle River, where the highest particulate metal loads were due to the export of road dusts exported by the NBH collector. Metal fluxes from the NBH collector represented highly variable fractions of daily fluxes into the Gironde Estuary at the outlet of the Jalle River, depending on elements and partitioning. The resulting relative contributions ranged from: 5% (Sr) to 40% (Cu) for dissolved phases and 30% (As) to 88% (Cu) for particulate phases. The first 40 min of the event accounted for 65% of the suspended particulate matter flux (and associated particulate metals) exported by the NBH collector, whereas the respective water flux contribution was 35%. This finding clearly demonstrates the importance of monitoring the first minutes of rainy events when establishing mass balances in urban systems.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Estuários , França , Metais/análise , Rios , Poluentes Químicos da Água/análise
4.
Chemosphere ; 282: 131014, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34118619

RESUMO

We report here on the development and application of a submersible, compact, low power consumption, integrated multichannel trace metal sensing probe (TracMetal). This probe is unique in that it allows high-resolution, simultaneous in-situ measurements of the potentially bioavailable (so-called dynamic) fraction of Hg(II), As(III), Cd(II), Pb(II), Cu(II), Zn(II). The TracMetal incorporates nanostructured Au-plated and Hg-plated gel-integrated microelectrode arrays. In addition to be selective to the fraction of metal potentially bioavailable, they offer protection against fouling and ill-controlled convective interferences. Sensitivities in the low pM for Hg(II) and sub-nM for the other target trace metals is achieved with precision ≤ 12%. The TracMetal is capable of autonomous operation during deployment, with routines for repetitive measurements (1-2 h-1), data storage and management, data computer visualization, and wireless data transfer. The system was successfully applied in the Arcachon Bay, to study the temporal variation of the dynamic fraction of the trace metals targeted. The in situ autonomous TracMetal measurements were combined with in situ measurements of the master bio-physicochemical parameters and sample collection for complementary measurements of the dissolved metal concentrations, organic matter concentrations and proxy for biological activities. The integration of all data revealed that various biotic and abiotic processes control the temporal variation of the dynamic fractions of the target metals (Medyn). The difference in the percentage of the dynamic forms of the metals studied and the short-term processes influencing their variation highlight the TracMetal potentiality as metal bioavailability-assessment sentinel to achieve comprehensive environmental monitoring of dynamic aquatic systems.


Assuntos
Mercúrio , Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Disponibilidade Biológica , Monitoramento Ambiental , Metais/análise , Metais Pesados/análise , Oligoelementos/análise , Poluentes Químicos da Água/análise
5.
Sci Total Environ ; 656: 409-420, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30513431

RESUMO

New and rapidly developing technologies imply the emission of emerging potentially toxic contaminants such as Rare Earth Elements (REEs). Yet, the lithology-derived quantities and anthropogenic contributions, especially from urban areas, to annual REE fluxes into fluvial-estuarine systems remain widely unknown. The Garonne River drains water from ~20% of the French land surface hosting about 5,200,000 inhabitants and two large cities. Based on long-term monitoring (2003-2017) of water discharges and dissolved REEs concentrations at the outlet of the Garonne Watershed upstream from Bordeaux, this study aims at assessing REE anomalies and evaluating temporal evolution of annual dissolved REE fluxes into the Gironde Estuary. Additionally, potential urban sources (e.g. domestic, medical) in the urban area of Bordeaux (1,190,000 inhab.) were analyzed to evaluate respective signatures and contributions. Gadolinium (Gd) showed clear anomalies in all samples, with annual average anthropogenic concentrations ranging from 1.8 to 7.2 ng·L-1 (0.011 to 0.046 nmol·L-1) in the Garonne River. If variations in annual Gd fluxes depend on hydrology, anthropogenic Gd fluxes have shown an overall increasing trend from 32 kg·year-1 (204 mol·year-1) in 2003 to 75 kg·year-1 (475 mol·year-1) in 2017. Sewer waters from the third largest hospital complex of France, the hospital group Pellegrin, contributed 25% to the incoming daily Gd flux into Bordeaux major Waste Water Treatment Plant (WWTP), owed to Gd use as contrast agent for Magnetic Resonance Imaging (MRI). Due to weak removal efficiency in the WWTP, the Bordeaux Metropole significantly contributes (>27 kg·year-1; 172 mol·year-1) to Gd fluxes in the Gironde Estuary. The temporal evolution of anthropogenic Gd fluxes in the Garonne River may be related with the growing regional population and the increasing number of MRI instruments, highlighting the importance of new high-tech applications in urban areas on contaminant fluxes and their potential harmful effects in fluvial-estuarine systems in the future.

6.
Sci Total Environ ; 615: 652-663, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28992492

RESUMO

Platinum Group Elements (PGEs) are extremely scarce in the Earth's Crust and of strong interest for high-end technologies due to their specific properties. They belong to the Technology Critical Elements (TCEs) for which use is forecast to increase, implying growing emissions into the environment in the following years. In particular, with the intensive use of platinum (Pt) in car catalytic converters, the anthropogenic geochemical cycle of this element has surpassed the natural cycle. Yet, environmental Pt levels are still in the sub picomolar range, making its analytical detection a challenge. Few studies cover the behavior of Pt in marine waters in terms of speciation, reactivity and possible transfer to the biota. In this study, oysters (Crassostrea gigas) from an unpolluted estuary were exposed to the stable isotope 194Pt in seawater at a range of concentrations during 35days. Seawater was renewed daily and spiked to three nominal Pt concentrations (50, 100, and 10,000ng·L-1) for two replicate series. In addition, control conditions were monitored. Five oysters from each tank were dissected after 3, 7, 14, 21, 28, 35days of Pt exposure, and analyzed by ICP-MS. Accuracy of this analytical method applied to biological matrix was checked by an inter-method comparison with a voltammetrical technique. A concentration-dependent accumulation of Pt in oysters increasing with exposure time occurred. After 28days, oyster Pt accumulation from low and intermediate exposure conditions reached a plateau. This was not the case of the highest exposure condition for which oyster tissues showed increasing concentrations until the last day of the experiment. A linear correlation exists between seawater concentrations and Pt content in oysters for low and intermediate exposure concentrations i.e. closer to environmental concentrations. By showing high Pt accumulation potential, oysters may serve as sentinels, ensuring biomonitoring of Pt concentrations in marine coastal waters.


Assuntos
Crassostrea/metabolismo , Platina/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Cinética , Espécies Sentinelas
7.
Chemosphere ; 167: 501-511, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27756044

RESUMO

Although silver (Ag) has been listed as a priority pollutant for the aquatic environment by the European Union (Directive 2006/11/EC), the use of Ag-based products with antimicrobial effects is increasing in Europe, as well as North America and Asia. This study investigates personal care products (PCP) as a potential source of Ag in wastewater, as well as the dynamics and fate of Ag in the influent and effluent of a major urban wastewater treatment plant (WWTP) located on the fluvial part of the Gironde Estuary. Typical household PCPs marked as using Ag contained concentrations of up to 0.4 mg kg-1 making them likely contributors to urban Ag released into the aquatic environment. Silver concentrations in influent wastewater generally occurred during mid-week working hours and decreased during the night and on weekends clearly indicating the dominance of urban sources. Up to 90% of the total Ag in wastewater was bound to particles and efficiently (>80%) removed by the treatment process, whereas 20% of Ag was released into the fluvial estuary. Silver concentrations in wastewater effluents clearly exceeded estuarine concentrations and may strongly amplify the local Ag concentrations and fluxes, especially during summer rainstorms in low river discharge conditions. Further work should focus on environmental effects and fate of urban Ag release due to immediate localized outfall and/or the adsorption on estuarine particles and subsequent release as dissolved Ag chloro-complexes within the estuarine salinity gradient.


Assuntos
Monitoramento Ambiental/métodos , Estuários , Prata/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , França , Cinética , Rios , Salinidade , Estações do Ano
8.
Environ Sci Pollut Res Int ; 20(3): 1352-66, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22782792

RESUMO

Dissolved and particulate Ag concentrations (Ag(D) and Ag(P), respectively) were measured in surface water and suspended particulate matter (SPM) along the salinity gradient of the Gironde Estuary, South West France, during three cruises (2008-2009) covering contrasting hydrological conditions, i.e. two cruises during intermediate and one during high freshwater discharge (~740 and ~2,300 m(3)/s). Silver distribution reflected non-conservative behaviour with 60-70 % of Ag(P) in freshwater particles being desorbed by chlorocomplexation. The amount of Ag(P) desorbed was similar to the so-called reactive, potentially bioavailable Ag(P) fraction (60 ± 4 %) extracted from river SPM by 1 M HCl. Both Ag(P) (0.22 ± 0.05 mg/kg) and Ag(P)/Th(P) (0.025-0.028) in the residual fraction of fluvial and estuarine SPM were similar to those in SPM from the estuary mouth and in coastal sediments from the shelf off the Gironde Estuary, indicating that chlorocomplexation desorbs the reactive Ag(P). The data show that desorption of reactive Ag(P) mainly occurs inside the estuary during low and intermediate discharge, whereas expulsion of partially Ag(P)-depleted SPM (Ag(P)/Th(P) ~0.040) during the flood implies ongoing desorption in the coastal ocean, e.g. in the nearby oyster production areas (Marennes-Oléron Bay). The highest Ag(D) levels (6-8 ng/L) occurred in the mid-salinity range (15-20) of the Gironde Estuary and were decoupled from freshwater discharge. In the maximum turbidity zone, Ag(D) were at minimum, showing that high SPM concentrations (a) induce Ag(D) adsorption in estuarine freshwater and (b) counterbalance Ag(P) desorption in the low salinity range (1-3). Accordingly, Ag behaviour in turbid estuaries appears to be controlled by the balance between salinity and SPM levels. The first estimates of daily Ag(D) net fluxes for the Gironde Estuary (Boyle's method) showed relatively stable theoretical Ag(D) at zero salinity (Ag (D) (0) = 25-30 ng/L) for the contrasting hydrological situations. Accordingly, Ag(D) net fluxes were very similar for the situations with intermediate discharge (1.7 and 1.6 g/day) and clearly higher during the flood (5.0 g/day) despite incomplete desorption. Applying Ag (D) (0) to the annual freshwater inputs provided an annual net Ag(D) flux (0.64-0.89 t/year in 2008 and 0.56-0.77 t/year in 2009) that was 12-50 times greater than the Ag(D) gross flux. This estimate was consistent with net Ag(D) flux estimates obtained from gross Ag(P) flux considering 60 % desorption in the estuarine salinity gradient.


Assuntos
Estuários , Compostos de Prata/análise , Poluentes Químicos da Água/análise , Clorofila/análise , Clorofila A , França , Água Doce/análise , Material Particulado/análise , Salinidade , Água do Mar/análise
9.
J Environ Monit ; 11(5): 962-76, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19436854

RESUMO

The Riou Mort River watershed (SW France), representative of a heavily polluted, small, heterogeneous watershed, represents a major source for the polymetallic pollution of the Lot-Garonne-Gironde fluvial-estuarine system due to former mining and ore-treatment activities. In order to assess spatial distribution of the metal/metalloid contamination in the watershed, a high resolution hydrological and geochemical monitoring were performed during one year at four permanent observation stations. Additionally, thirty-five stream sediment samples were collected at representative key sites and analyzed for metal/metalloid (Cd, Zn, Cu, Pb, As, Sb, Mo, V, Cr, Co, Ni, Th, U and Hg) concentrations. The particulate concentrations in water and stream sediments show high spatial differences for most of the studied elements suggesting strong anthropogenic and/or lithogenic influences; for stream sediments, the sequence of the highest variability, ranging from 100% to 300%, is the following: Mo < Cu < Hg < As < Sb < Cd < Zn < Pb. Multidimensional statistical analyses combined with metal/metalloid maps generated by GIS tool were used to establish relationships between elements, to identify metal/metalloid sources and localize geochemical anomalies attributed to local geochemical background, urban and industrial activities. Finally, this study presents an approach to assess anthropogenic trace metal inputs within this watershed by combining lithology-dependent geochemical background values, metal/metalloid concentrations in stream sediments and mass balances of element fluxes at four key sites. The strongest anthropogenic contributions to particulate element fluxes are 90-95% for Cd, Zn and Hg in downstream sub-catchments. The localisation of anthropogenic metal/metalloid sources in restricted areas offers a great opportunity to further significantly reduce metal emissions and restore the Lot-Garonne-Gironde fluvial-estuarine ecosystem.


Assuntos
Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Metais/análise , Mineração , Poluentes Químicos da Água/análise , França , Sedimentos Geológicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...