Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Methods Protoc ; 6(1): bpab011, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34250256

RESUMO

Long-term preservation of laboratory strains of Chlamydomonas reinhardtii has historically involved either liquid nitrogen cryopreservation, which is expensive and labor intensive, or storage on agar plates, which requires frequent transfer to new plates, and which may leave samples susceptible to contamination as well as genetic drift and/or selection. The emergence of C. reinhardtii as a model organism for genetic analysis and experimental evolution has produced an increasing demand for an efficient method to cryopreserve C. reinhardtii populations. The GeneArt™ Cryopreservation Kit for Algae provides the first method for algal storage at -80°C; however, little is known about how this method affects recovery of different clones, much less polyclonal populations. Here, we compare postfreeze viability of clonal and genetically mixed samples frozen at -80°C using GeneArt™ or cryopreserved using liquid nitrogen. We find that the GeneArt™ protocol yields similar percent recoveries for some but not all clonal cultures, when compared to archiving via liquid N2. We also find that relative frequency of different strains recovered from genetically mixed populations can be significantly altered by cryopreservation. Thus, while cryopreservation using GeneArt™ is an effective means for archiving certain clonal populations, it is not universally so. Strain-specific differences in freeze-thaw tolerance complicate the storage of different clones, and may also bias the recovery of different genotypes from polyclonal populations.

2.
ACS Appl Bio Mater ; 3(1): 512-521, 2020 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35019394

RESUMO

Bacteriophage material (M13, wild-type) deposited as a film onto a poly(ethylene terephthalate) (PET) substrate (6 µm thick with a 20 µm diameter laser-drilled microhole) has been investigated for ion conductivity and ionic current rectification effects for potential applications in membranes. The M13 aggregate membrane forms under acidic conditions (in aqueous 10 mM acids) and behaves like a microporous anion conductor with micropores defined by the packing of cylindrical virus particles. Asymmetric deposition on the PET film substrate in conjunction with semipermeability leads to anionic diode behavior. Typical rectification ratio values are around 10 (determined at ±1 V) in aqueous 10 mM acids. Cationic guest species (aqueous Cu2+, Co2+, Ag+) consistently lead to a rectification minimum at 0.5 mM guest concentration. In contrast, anionic guest species (indigo carmine) lead to a similar rectification minimum already at 5 µM concentration. The behavior is proposed to be associated with cation exclusion effects on transport.

3.
Sci Rep ; 9(1): 2328, 2019 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-30787483

RESUMO

The transition from unicellular to multicellular life was one of a few major events in the history of life that created new opportunities for more complex biological systems to evolve. Predation is hypothesized as one selective pressure that may have driven the evolution of multicellularity. Here we show that de novo origins of simple multicellularity can evolve in response to predation. We subjected outcrossed populations of the unicellular green alga Chlamydomonas reinhardtii to selection by the filter-feeding predator Paramecium tetraurelia. Two of five experimental populations evolved multicellular structures not observed in unselected control populations within ~750 asexual generations. Considerable variation exists in the evolved multicellular life cycles, with both cell number and propagule size varying among isolates. Survival assays show that evolved multicellular traits provide effective protection against predation. These results support the hypothesis that selection imposed by predators may have played a role in some origins of multicellularity.


Assuntos
Chlamydomonas reinhardtii/citologia , Comportamento Predatório/fisiologia , Animais , Contagem de Células , Chlamydomonas reinhardtii/ultraestrutura , Rotíferos/fisiologia
4.
R Soc Open Sci ; 5(8): 180912, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30225080

RESUMO

The evolution of multicellularity was a major transition in evolution and set the stage for unprecedented increases in complexity, especially in land plants and animals. Here, we explore the genetics underlying a de novo origin of multicellularity in a microbial evolution experiment carried out on the green alga Chlamydomonas reinhardtii. We show that large-scale changes in gene expression underlie the transition to a multicellular life cycle. Among these, changes to genes involved in cell cycle and reproductive processes were overrepresented, as were changes to C. reinhardtii-specific and volvocine-specific genes. These results suggest that the genetic basis for the experimental evolution of multicellularity in C. reinhardtii has both lineage-specific and shared features, and that the shared features have more in common with C. reinhardtii's relatives among the volvocine algae than with other multicellular green algae or land plants.

5.
Langmuir ; 34(24): 6991-6996, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29782804

RESUMO

We present an attractive method for the fabrication of long, straight, highly crystalline, ultrathin platinum nanowires. The fabrication is simply achieved using an inverse hexagonal (HII) lyotropic liquid crystal phase of the commercial surfactant phytantriol as a template. A platinum precursor dissolved within the cylindrical aqueous channels of the liquid crystal phase is chemically reduced by galvanic displacement using stainless steel. We demonstrate the production of nanowires using the HII phase in the phytantriol/water system which we obtain either by heating to 55 °C or at room temperature by the addition of a hydrophobic liquid, 9- cis-tricosene, to relieve packing frustration. The two sets of conditions produced high aspect nanowires with diameters of 2.5 and 1.7 nm, respectively, at least hundreds of nanometers in length, matching the size of the aqueous channels in which they grow. This versatile approach can be extended to produce highly uniform nanowires from a range of metals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...