Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(10): 1822-1834, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37733627

RESUMO

The formation of noncovalent complexes by mixing of positively charged polymers with negatively charged oligonucleotides (ONs) is a widely explored concept in nanomedicine to achieve cellular delivery of ONs. Uptake of ON complexes occurs through endocytosis, which then requires release of ON from endosomes. As one type of polymer, cell-penetrating peptides (CPPs) are being used which are peptides of about 8-30 amino acids in length. However, only a few CPPs yield effective cytosolic ON delivery and activity. Several strategies have been devised to increase cellular uptake and enhance endosomal release, among which an increase of osmotic pressure through the so-called proton sponge effect, disruption of membrane integrity through membrane activity, and disulfide-mediated polymerization. Here, we address the relevance of these concepts for mRNA delivery by incorporating structural features into the human lactoferrin-derived CPP, which shows uptake but not delivery. The incorporation of histidines was explored to address osmotic pressure and structural motifs of the delivery-active CPP PepFect14 (PF14) to address membrane disturbance, and finally, the impact of polymerization was explored. Whereas oligomerization increased the stability of polyplexes against heparin-induced decomplexation, neither this approach nor the incorporation of histidine residues to promote a proton-sponge effect yielded activity. Also, the replacement of arginine residues with lysine or ornithine residues, as in PF14, was without effect, even though all polyplexes showed cellular uptake. Ultimately, sufficient activity could only be achieved by transferring amphipathic sequence motifs from PF14 into the hLF context with some benefit of oligomerization demonstrating overarching principles of delivery for CPPs, lipid nanoparticles, and other types of delivery polymers.


Assuntos
Peptídeos Penetradores de Células , Humanos , Peptídeos Penetradores de Células/química , Prótons , Oligonucleotídeos/metabolismo , Endocitose , Polímeros
2.
Theranostics ; 13(12): 4004-4015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37554267

RESUMO

One of the main challenges of PET imaging with 89Zr-labeled monoclonal antibodies (mAbs) remains the long blood circulation of the radiolabeled mAbs, leading to high background signals, decreasing image quality. To overcome this limitation, here we report the use of a bioorthogonal linker cleavage approach (click-to-release chemistry) to selectively liberate [89Zr]Zr-DFO from trans-cyclooctene-functionalized trastuzumab (TCO-Tmab) in blood, following the administration of a tetrazine compound (trigger) in BT-474 tumor-bearing mice. Methods: We created a series of TCO-DFO constructs and evaluated their performance in [89Zr]Zr-DFO release from Tmab in vitro using different trigger compounds. The in vivo behavior of the best performing [89Zr]Zr-TCO-Tmab was studied in healthy mice first to determine the optimal dose of the trigger. To find the optimal time for the trigger administration, the rate of [89Zr]Zr-TCO-Tmab internalization was studied in BT-474 cancer cells. Finally, the trigger was administered 6 h or 24 h after [89Zr]Zr-TCO-Tmab- administration in tumor-bearing mice to liberate the [89Zr]Zr-DFO fragment. PET scans were obtained of tumor-bearing mice that received the trigger 6 h post-[89Zr]Zr-TCO-Tmab administration. Results: The [89Zr]Zr-TCO-Tmab and trigger pair with the best in vivo properties exhibited 83% release in 50% mouse plasma. In tumor-bearing mice the tumor-blood ratios were markedly increased from 1.0 ± 0.4 to 2.3 ± 0.6 (p = 0.0057) and from 2.5 ± 0.7 to 6.6 ± 0.9 (p < 0.0001) when the trigger was administered at 6 h and 24 h post-mAb, respectively. Same day PET imaging clearly showed uptake in the tumor combined with a strongly reduced background due to the fast clearance of the released [89Zr]Zr-DFO-containing fragment from the circulation through the kidneys. Conclusions: This is the first demonstration of the use of trans-cyclooctene-tetrazine click-to-release chemistry to release a radioactive chelator from a mAb in mice to increase tumor-to-blood ratios. Our results suggest that click-cleavable radioimmunoimaging may allow for substantially shorter intervals in PET imaging with full mAbs, reducing radiation doses and potentially even enabling same day imaging.


Assuntos
Neoplasias , Radioimunodetecção , Animais , Camundongos , Trastuzumab , Anticorpos Monoclonais/química , Tomografia por Emissão de Pósitrons/métodos , Ciclo-Octanos/química , Linhagem Celular Tumoral , Zircônio/química
3.
Mol Pharm ; 20(4): 2245-2255, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36882391

RESUMO

Limited diffusion of oxygen in combination with increased oxygen consumption leads to chronic hypoxia in most solid malignancies. This scarcity of oxygen is known to induce radioresistance and leads to an immunosuppressive microenvironment. Carbonic anhydrase IX (CAIX) is an enzyme functioning as a catalyzer for acid export in hypoxic cells and is an endogenous biomarker for chronic hypoxia. The aim of this study is to develop a radiolabeled antibody that recognizes murine CAIX to visualize chronic hypoxia in syngeneic tumor models and to study the immune cell population in these hypoxic areas. An anti-mCAIX antibody (MSC3) was conjugated to diethylenetriaminepentaacetic acid (DTPA) and radiolabeled with indium-111 (111In). CAIX expression on murine tumor cells was determined using flow cytometry, and in vitro affinity of [111In]In-MSC3 was analyzed in a competitive binding assay. Ex vivo biodistribution studies were performed to determine in vivo radiotracer distribution. CAIX+ tumor fractions were determined by mCAIX microSPECT/CT, and the tumor microenvironment was analyzed using immunohistochemistry and autoradiography. We showed that [111In]In-MSC3 binds to CAIX-expressing (CAIX+) murine cells in vitro and accumulates in CAIX+ areas in vivo. We optimized the use of [111In]In-MSC3 for preclinical imaging such that it can be applied in syngeneic mouse models and showed that we can quantitatively distinguish between tumor models with varying CAIX+ fractions by ex vivo analyses and in vivo mCAIX microSPECT/CT. Analysis of the tumor microenvironment identified these CAIX+ areas as less infiltrated by immune cells. Together these data demonstrate that mCAIX microSPECT/CT is a sensitive technique to visualize hypoxic CAIX+ tumor areas that exhibit reduced infiltration of immune cells in syngeneic mouse models. In the future, this technique may enable visualization of CAIX expression before or during hypoxia-targeted or hypoxia-reducing treatments. Thereby, it will help optimize immuno- and radiotherapy efficacy in translationally relevant syngeneic mouse tumor models.


Assuntos
Hipóxia , Neoplasias , Animais , Camundongos , Anidrase Carbônica IX/metabolismo , Distribuição Tecidual , Hipóxia/metabolismo , Antígenos de Neoplasias/metabolismo , Oxigênio , Linhagem Celular Tumoral , Microambiente Tumoral
4.
J Med Chem ; 66(12): 7772-7784, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-36995126

RESUMO

Positron emission tomography (PET) imaging is used in drug development to noninvasively measure biodistribution and receptor occupancy. Ideally, PET tracers retain target binding and biodistribution properties of the investigated drug. Previously, we developed a zirconium-89 PET tracer based on a long-circulating glucagon-like peptide 1 receptor agonist (GLP-1RA) using desferrioxamine (DFO) as a chelator. Here, we aimed to develop an improved zirconium-89-labeled GLP-1RA with increased molar activity to increase the uptake in low receptor density tissues, such as brain. Furthermore, we aimed at reducing tracer accumulation in the kidneys. Introducing up to four additional Zr-DFOs resulted in higher molar activity and stability, while retaining potency. Branched placement of DFOs was especially beneficial. Tracers with either two or four DFOs had similar biodistribution as the tracer with one DFO in vivo, albeit increased kidney and liver uptake. Reduced kidney accumulation was achieved by introducing an enzymatically cleavable Met-Val-Lys (MVK) linker motif between the chelator and the peptide.


Assuntos
Desferroxamina , Tomografia por Emissão de Pósitrons , Desferroxamina/química , Distribuição Tecidual , Tomografia por Emissão de Pósitrons/métodos , Zircônio/química , Quelantes/química , Rim/diagnóstico por imagem , Linhagem Celular Tumoral
5.
ACS Pharmacol Transl Sci ; 5(8): 616-624, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35990007

RESUMO

Positron emission tomography (PET) is a molecular imaging modality that enables non-invasive visualization of tracer distribution and pharmacology. Recently, peptides with long half-lives allowed once-a-week dosing of glucagon-like peptide-1 receptor (GLP-1R) agonists with therapeutic applications in diabetes and obesity. PET imaging for such long-lived peptides is hindered by the typically used short-lived radionuclides. Zirconium-89 (89Zr) emerged as a promising PET radionuclide with a sufficiently long half-life to be applied for biodistribution studies of long-circulating biomolecules. A comparison between the biodistribution profiles obtained via 89Zr-PET and the current standard, quantitative whole-body autoradiography (QWBA), will be valuable for the development of novel peptide drugs. We determined the PET biodistribution of a 89Zr-labeled acylated peptide agonist of GLP-1R and compared it to the profile obtained by QWBA using analogous tritiated tracers for up to 1 week after administration. The plasma metabolic profile was obtained and identification was done for the tritiated tracers. We found that, at early time points, the biodistribution profiles agreed between PET and QWBA. At the latertime points, the 89Zr tracer remained primarily trapped in the kidneys. The introduction of desferrioxamine (DFO) chelator reduced the peptide stability, and UPLC-MS analysis identified a circulating metabolite arising from DFO hydrolysis. Kidney accumulation of radiolabeled peptides and DFO metabolic instability may compromise biodistribution studies using 89Zr-PET to support the development of new biopharmaceuticals. PET and QWBA biodistribution data correlated well during the absorption phase, but new and more stable 89Zr chelators are needed for a more accurate description of the elimination phase.

6.
Bioconjug Chem ; 33(3): 530-540, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35230093

RESUMO

Because positron emission tomography (PET) and optical imaging are very complementary, the combination of these two imaging modalities is very enticing in the oncology field. Such bimodal imaging generally relies on imaging agents bearing two different imaging reporters. In the bioconjugation field, this is mainly performed by successive random conjugations of the two reporters on the protein vector, but these random conjugations can alter the vector properties. In this study, we aimed at abrogating the heterogeneity of the bimodal imaging immunoconjugate and mitigating the impact of multiple random conjugations. A trivalent platform bearing a DFO chelator for 89Zr labeling, a NIR fluorophore, IRDye800CW, and a bioconjugation handle was synthesized. This bimodal probe was site-specifically grafted to trastuzumab via glycan engineering. This new bimodal immunoconjugate was then investigated in terms of radiochemistry, in vitro and in vivo, and compared to the clinically relevant random equivalent. In vitro and in vivo, our strategy provides several improvements over the current clinical standard. The combination of site-specific conjugation with the monomolecular platform reduced the heterogeneity of the final immunoconjugate, improved the resistance of the fluorophore toward radiobleaching, and reduced the nonspecific uptake in the spleen and liver compared to the standard random immunoconjugate. To conclude, the strategy developed is very promising for the synthesis of better defined dual-labeled immunoconjugates, although there is still room for improvement. Importantly, this conjugation strategy is highly modular and could be used for the synthesis of a wide range of dual-labeled immunoconjugates.


Assuntos
Imunoconjugados , Neoplasias , Linhagem Celular Tumoral , Corantes Fluorescentes/química , Humanos , Imunoconjugados/química , Tomografia por Emissão de Pósitrons/métodos , Radioisótopos/química , Distribuição Tecidual , Zircônio/química
7.
Cancers (Basel) ; 13(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34680219

RESUMO

The exponential growth of research on cell-based therapy is in major need of reliable and sensitive tracking of a small number of therapeutic cells to improve our understanding of the in vivo cell-targeting properties. 111In-labeled poly(lactic-co-glycolic acid) with a primary amine endcap nanoparticles ([111In]In-PLGA-NH2 NPs) were previously used for cell labeling and in vivo tracking, using SPECT/CT imaging. However, to detect a low number of cells, a higher sensitivity of PET is preferred. Therefore, we developed 89Zr-labeled NPs for ex vivo cell labeling and in vivo cell tracking, using PET/MRI. We intrinsically and efficiently labeled PLGA-NH2 NPs with [89Zr]ZrCl4. In vitro, [89Zr]Zr-PLGA-NH2 NPs retained the radionuclide over a period of 2 weeks in PBS and human serum. THP-1 (human monocyte cell line) cells could be labeled with the NPs and retained the radionuclide over a period of 2 days, with no negative effect on cell viability (specific activity 279 ± 10 kBq/106 cells). PET/MRI imaging could detect low numbers of [89Zr]Zr-THP-1 cells (10,000 and 100,000 cells) injected subcutaneously in Matrigel. Last, in vivo tracking of the [89Zr]Zr-THP-1 cells upon intravenous injection showed specific accumulation in local intramuscular Staphylococcus aureus infection and infiltration into MDA-MB-231 tumors. In conclusion, we showed that [89Zr]Zr-PLGA-NH2 NPs can be used for immune-cell labeling and subsequent in vivo tracking of a small number of cells in different disease models.

8.
J Control Release ; 328: 762-775, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-32931896

RESUMO

Chronic and acute kidney disease constitute a worldwide health burden, but are still lacking efficient therapeutics. Current medication such as anti-inflammatory steroids causes systemic side effects, and is unable to stop the progression of the disease. Efforts have been devoted towards the development of renal-targeted therapies, however, no such approach has reached the clinic, yet. Here, we critically review the current status of renal-targeted drugs and delivery strategies. Specifically, we focus on the quantitative aspect of delivery by compiling information on kidney-to-liver ratios and also investigating to which degree the implementation of a targeting functionality increases the distribution of the drug to the kidney. As we show, two types of functional outcomes can be distinguished: (i) Targeting to the kidney goes along with an increase in kidney-to-liver ratio. This, we denote as direct targeting; (ii) the accumulation of the drug in the kidney increases, but the kidney-to-liver ratio remains unchanged, thereby the carrier leads to a general uptake enhancement. Overall, the most effective targeting was reached with receptor and transporter directed strategies. Reaching glomerular cells and the avoidance of liver accumulation for nanoparticulate formulations pose the greatest challenges.


Assuntos
Nefropatias , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Humanos , Rim , Nefropatias/tratamento farmacológico , Glomérulos Renais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...