Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38586984

RESUMO

BACKGROUND: Primary orthostatic tremor (OT) can affect patients' life. Treatment of OT with deep brain stimulation (DBS) of the thalamic ventral intermediate nucleus (Vim) is described in a limited number of patients. The Vim and posterior subthalamic area (PSA) can be targeted in a single trajectory, allowing both stimulation of the Vim and/or dentatorubrothalamic tract (DRT). In essential tremor this is currently often used with positive effects. OBJECTIVE: To evaluate the efficacy of Vim/DRT-DBS in OT-patients, based on standing time and Quality of Life (QoL), also on the long-term. Furthermore, to relate stimulation of the Vim and DRT, medial lemniscus (ML) and pyramidal tract (PT) to beneficial clinical and side-effects. METHODS: Nine severely affected OT-patients received bilateral Vim/DRT-DBS. Primary outcome measure was standing time; secondary measures included self-reported measures, neurophysiological measures, structural analyses, surgical complications, stimulation-induced side-effects, and QoL up to 56 months. Stimulation of volume of tissue activated (VTA) were related to outcome measures. RESULTS: Average maximum standing time increased from 41.0 s ± 51.0 s to 109.3 s ± 65.0 s after 18 months, with improvements measured in seven of nine patients. VTA (n = 7) overlapped with the DRT in six patients and with the ML and/or PT in six patients. All patients experienced side-effects and QoL worsened during the first year after surgery, which improved again during long-term follow-up, although remaining below age-related normal values. Most patients reported a positive effect of DBS. CONCLUSION: Vim/DRT-DBS improved standing time in patients with severe OT. Observed side-effects are possibly related to stimulation of the ML and PT.

2.
Mov Disord Clin Pract ; 11(4): 373-380, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385792

RESUMO

BACKGROUND: Identifying the dorsolateral subthalamic nucleus (STN) for deep brain stimulation (DBS) in Parkinson's disease (PD) can be challenging due to the size and double-oblique orientation. Since 2015 we implemented 7-Tesla T2 weighted magnetic resonance imaging (7 T T2) for improving visualization and targeting of the dorsolateral STN. We describe the changes in surgical planning and outcome since implementation of 7 T T2 for DBS in PD. METHODS: By comparing two cohorts of STN DBS patients in different time periods we evaluated the influence of 7 T T2 on STN target planning, the number of microelectrode recording (MER) trajectories, length of STN activity and the postoperative motor (UPDRS) improvement. RESULTS: From February 2007 to January 2014, 1.5 and 3-Tesla T2 guided STN DBS with 3 MER channels was performed in 76 PD patients. Average length of recorded STN activity in the definite electrode trajectory was 3.9 ± 1.5 mm. From January 2015 to January 2022 7 T T2 and MER-guided STN DBS was performed in 182 PD patients. Average length of recorded STN activity in the definite electrode trajectory was 5.1 ± 1.3 mm and used MER channels decreased from 3 to 1. Average UPDRS improvement was comparable. CONCLUSION: Implementation of 7 T T2 for STN DBS enabled a refinement in targeting. Combining classical DBS targeting with dorsolateral STN alignment may be used to determine the optimal trajectory. The improvement in dorsolateral STN visualization can be used for further target refinements, for example adding probabilistic subthalamic connectivity, to enhance clinical outcome of STN DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/diagnóstico por imagem , Estimulação Encefálica Profunda/métodos , Núcleo Subtalâmico/diagnóstico por imagem , Imageamento por Ressonância Magnética , Microeletrodos
3.
J Neurol Neurosurg Psychiatry ; 95(3): 214-221, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37679030

RESUMO

BACKGROUND: This study aims: (1) To compare cognitive and psychiatric outcomes after bilateral awake versus asleep subthalamic nucleus (STN) deep brain stimulation (DBS) surgery for Parkinson's disease (PD). (2) To explore the occurrence of psychiatric diagnoses, cognitive impairment and quality of life after surgery in our whole sample. (3) To validate whether we can predict postoperative cognitive decline. METHODS: 110 patients with PD were randomised to receive awake (n=56) or asleep (n=54) STN DBS surgery. At baseline and 6-month follow-up, all patients underwent standardised assessments testing several cognitive domains, psychiatric symptoms and quality of life. RESULTS: There were no differences on neuropsychological composite scores and psychiatric symptoms between the groups, but we found small differences on individual tests and cognitive domains. The asleep group performed better on the Rey Auditory Verbal Learning Test delayed memory test (f=4.2, p=0.04), while the awake group improved on the Rivermead Behavioural Memory Test delayed memory test. (f=4.4, p=0.04). The Stroop III score was worse for the awake group (f=5.5, p=0.02). Worse scores were present for Stroop I (Stroop word card) (f=6.3, p=0.01), Stroop II (Stroop color card) (f=46.4, p<0.001), Stroop III (Stroop color-word card) (f=10.8, p=0.001) and Trailmaking B/A (f=4.5, p=0.04). Improvements were seen on quality of life: Parkinson's Disease Questionnaire-39 (f=24.8, p<0.001), and psychiatric scales: Hamilton Depression Rating Scale (f=6.2, p=0.01), and Hamilton Anxiety Rating Scale (f=5.5, p=0.02). CONCLUSIONS: This study suggests that the choice between awake and asleep STN DBS does not affect cognitive, mood and behavioural adverse effects, despite a minor difference in memory. STN DBS has a beneficial effect on quality of life, mood and anxiety symptoms. TRIAL REGISTRATION NUMBER: NTR5809.


Assuntos
Anestesia , Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/psicologia , Estimulação Encefálica Profunda/efeitos adversos , Qualidade de Vida , Cognição/fisiologia , Resultado do Tratamento
4.
Neuromodulation ; 27(3): 528-537, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37452799

RESUMO

OBJECTIVES: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) for Parkinson's disease (PD) has an ambiguous relation to speech. Speech impairment can be a stimulation-induced side effect, and parkinsonian dysarthria can improve with STN-DBS. Owing to the lack of an up-to-date and evidence-based approach, DBS reprogramming for speech impairment is largely blind and greatly relies on the physician's experience. In this study, we aimed to establish an evidence- and experience-based algorithm for managing speech impairment in patients with PD treated with STN-DBS. MATERIALS AND METHODS: We performed a single-center retrospective study to identify patients with STN-DBS and speech impairment. Onset of speech impairment, lead localization, and assessment of DBS-induced nature of speech impairment were collected. When DBS settings were adjusted for improving speech, the magnitude and duration of effect were collected. We also performed a systematic literature review to identify studies describing the effects of parameter adjustments aimed at improving speech impairment in patients with PD receiving STN-DBS. RESULTS: In the retrospective study, 245 of 631 patients (38.8%) with STN-DBS had significant speech impairment. The probability of sustained marked improvement upon reprogramming was generally low (27.9%). In the systematic review, 23 of 662 identified studies were included. Only two randomized controlled trials have been performed, providing evidence for interleaving-interlink stimulation only. Considerable methodologic heterogeneity precluded the conduction of a meta-analysis. CONCLUSIONS: Speech impairment in STN-DBS for PD is frequent, but high-quality evidence regarding DBS parameter adjustments is scarce, and the probability of sustained improvement is low. To improve this outcome, we propose an evidence- and experience-based approach to address speech impairment in STN-DBS that can be used in clinical practice.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Fala , Doença de Parkinson/complicações , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiologia , Estudos Retrospectivos , Distúrbios da Fala/etiologia , Distúrbios da Fala/terapia
5.
Brain Commun ; 5(6): fcad298, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025271

RESUMO

Connectivity-derived 7-Tesla MRI segmentation and intraoperative microelectrode recording can both assist subthalamic nucleus targeting for deep brain stimulation in Parkinson's disease. It remains unclear whether deep brain stimulation electrodes placed in the 7-Tesla MRI segmented subdivision with predominant projections to cortical motor areas (hyperdirect pathway) achieve superior motor improvement and whether microelectrode recording can accurately distinguish the motor subdivision. In 25 patients with Parkinson's disease, deep brain stimulation electrodes were evaluated for being inside or outside the predominantly motor-connected subthalamic nucleus (motor-connected subthalamic nucleus or non-motor-connected subthalamic nucleus, respectively) based on 7-Tesla MRI connectivity segmentation. Hemi-body motor improvement (Movement Disorder Society Unified Parkinson's Disease Rating Scale, Part III) and microelectrode recording characteristics of multi- and single-unit activities were compared between groups. Deep brain stimulation electrodes placed in the motor-connected subthalamic nucleus resulted in higher hemi-body motor improvement, compared with electrodes placed in the non-motor-connected subthalamic nucleus (80% versus 52%, P < 0.0001). Multi-unit activity was found slightly higher in the motor-connected subthalamic nucleus versus the non-motor-connected subthalamic nucleus (P < 0.001, receiver operating characteristic 0.63); single-unit activity did not differ between groups. Deep brain stimulation in the connectivity-derived 7-Tesla MRI subthalamic nucleus motor segment produced a superior clinical outcome; however, microelectrode recording did not accurately distinguish this subdivision within the subthalamic nucleus.

6.
BMC Neurol ; 23(1): 372, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853327

RESUMO

BACKGROUND: The effectiveness of Deep Brain Stimulation (DBS) therapy for Parkinson's disease can be limited by side-effects caused by electrical current spillover into structures adjacent to the target area. The objective of the STEEred versus RING-mode DBS for Parkinson's disease (STEERING) study is to investigate if directional DBS for Parkinson's disease results in a better clinical outcome when compared to ring-mode DBS. METHODS: The STEERING study is a prospective multi-centre double-blind randomised crossover trial. Inclusion criteria are Parkinson's disease, subthalamic nucleus DBS in a 'classic' ring-mode setting for a minimum of six months, and optimal ring-mode settings have been established. Participants are categorised into one of two subgroups according to their clinical response to the ring-mode settings as 'responders' (i.e., patient with a satisfactory effect of ring-mode DBS) or 'non-responder' (i.e., patient with a non-satisfactory effect of ring-mode DBS). A total of 64 responders and 38 non-responders will be included (total 102 patients). After an optimisation period in which an optimal directional setting is found, participants are randomised to first receive ring-mode DBS for 56 days (range 28-66) followed by directional DBS for 56 days (28-66) or vice-versa. The primary outcome is the difference between ring-mode DBS and directional DBS settings on the Movement Disorders Society Unified Parkinson's Disease Rating Scale - Motor Evaluation (MDS-UPDRS-ME) in the off-medication state. Secondary outcome measures consist of MDS-UPDRS-ME in the on-medication state, MDS-UPDRS Activities of Daily Living, MDS-UPDRS Motor Complications-Dyskinesia, disease related quality of life measured with the Parkinson's Disease Questionnaire 39, stimulation-induced side-effects, antiparkinsonian medication use, and DBS-parameters. Participants' therapy preference is measured at the end of the study. Outcomes will be analysed for both responder and non-responder groups, as well as for both groups pooled together. DISCUSSION: The STEERING trial will provide insights into whether or not directional DBS should be standardly used in all Parkinson's disease DBS patients or if directional DBS should only be used in a case-based approach. TRIAL REGISTRATION: This trial was registered on the Netherlands Trial Register, as trial NL6508 ( NTR6696 ) on June 23, 2017.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Estudos Prospectivos , Estimulação Encefálica Profunda/métodos , Qualidade de Vida , Atividades Cotidianas , Estudos Cross-Over , Resultado do Tratamento , Ensaios Clínicos Controlados Aleatórios como Assunto , Estudos Multicêntricos como Assunto
7.
Neuroimage Clin ; 38: 103431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187041

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is an effective treatment for disabling fluctuations in motor symptoms in Parkinson's disease (PD) patients. However, iterative exploration of all individual contact points (four in each STN) by the clinician for optimal clinical effects may take months. OBJECTIVE: In this proof of concept study we explored whether magnetoencephalography (MEG) has the potential to noninvasively measure the effects of changing the active contact point of STN-DBS on spectral power and functional connectivity in PD patients, with the ultimate aim to aid in the process of selecting the optimal contact point, and perhaps reduce the time to achieve optimal stimulation settings. METHODS: The study included 30 PD patients who had undergone bilateral DBS of the STN. MEG was recorded during stimulation of each of the eight contact points separately (four on each side). Each stimulation position was projected on a vector running through the longitudinal axis of the STN, leading to one scalar value indicating a more dorsolateral or ventromedial contact point position. Using linear mixed models, the stimulation positions were correlated with band-specific absolute spectral power and functional connectivity of i) the motor cortex ipsilateral tot the stimulated side, ii) the whole brain. RESULTS: At group level, more dorsolateral stimulation was associated with lower low-beta absolute band power in the ipsilateral motor cortex (p = .019). More ventromedial stimulation was associated with higher whole-brain absolute delta (p = .001) and theta (p = .005) power, as well as higher whole-brain theta band functional connectivity (p = .040). At the level of the individual patient, switching the active contact point caused significant changes in spectral power, but the results were highly variable. CONCLUSIONS: We demonstrate for the first time that stimulation of the dorsolateral (motor) STN in PD patients is associated with lower low-beta power values in the motor cortex. Furthermore, our group-level data show that the location of the active contact point correlates with whole-brain brain activity and connectivity. As results in individual patients were quite variable, it remains unclear if MEG is useful in the selection of the optimal DBS contact point.


Assuntos
Encéfalo , Estimulação Encefálica Profunda , Magnetoencefalografia , Doença de Parkinson , Estudo de Prova de Conceito , Núcleo Subtalâmico , Humanos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Núcleo Subtalâmico/anatomia & histologia , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Córtex Motor/fisiologia , Córtex Motor/fisiopatologia
8.
Neuromodulation ; 26(8): 1705-1713, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35088745

RESUMO

BACKGROUND: The dentato-rubro-thalamic tract (DRT) is currently considered as a potential target in deep brain stimulation (DBS) for various types of tremor. However, tractography depiction can vary depending on the included brain regions. The fast gray matter acquisition T1 inversion recovery (FGATIR) sequence, with excellent delineation of gray and white matter, possibly provides anatomical identification of rubro-thalamic DRT fibers. OBJECTIVE: This study aimed to evaluate the FGATIR sequence by comparison with DRT depiction, electrode localization, and effectiveness of DBS therapy. MATERIALS AND METHODS: In patients with DBS therapy because of medication-refractory tremor, the FGATIR sequence was evaluated for depiction of the thalamus, red nucleus (RN), and rubro-thalamic connections. Deterministic tractography of the DRT, electrode localization, and tremor control were compared. The essential tremor rating scale was used to assess (hand) tremor. Tremor control was considered successful when complete tremor suppression (grade 0) or almost complete suppression (grade 1) was observed. RESULTS: In the postoperative phase, we evaluated 14 patients who underwent DRT-guided DBS: 12 patients with essential tremor, one with tremor-dominant Parkinson disease, and one with multiple sclerosis, representing 24 trajectories. Mean follow-up was 11.3 months (range 6-19 months). The FGATIR sequence provided a clear delineation of a hypointense white matter tract within the hyperintense thalamus. In coronal plane, this tract was most readily recognizable as a "rubral wing," with the round RN as base and lateral triangular convergence. The deterministic DRT depiction was consistently situated within the rubral wing. The number of active contacts located within the DRT (and rubral wing) was 22 (92%), of which 16 (73%) showed successful tremor control. CONCLUSIONS: The FGATIR sequence offers visualization of the rubro-thalamic connections that form the DRT, most readily recognizable as a "rubral wing" in coronal plane. This sequence contributes to tractographic depiction of DRT and provides a direct anatomical DBS target area for tremor control.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor/terapia , Tremor/cirurgia , Tremor Essencial/terapia , Substância Cinzenta/diagnóstico por imagem , Imagem de Tensor de Difusão , Tálamo/diagnóstico por imagem , Tálamo/cirurgia
9.
Neuromodulation ; 26(2): 333-339, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35216874

RESUMO

BACKGROUND: Deep brain stimulation (DBS) of the subthalamic nucleus (STN) is a highly effective surgical treatment for patients with advanced Parkinson disease (PD). Combining 7.0-Tesla (7T) T2- and diffusion-weighted imaging (DWI) sequences allows for selective segmenting of the motor part of the STN and, thus, for possible optimization of DBS. MATERIALS AND METHODS: 7T T2 and DWI sequences were obtained, and probabilistic segmentation of motor, associative, and limbic STN segments was performed. Left- and right-sided motor outcome (Movement Disorders Society Unified Parkinson's Disease Rating Scale) scores were used for evaluating the correspondence between the active electrode contacts in selectively segmented STN and the clinical DBS effect. The Bejjani line was reviewed for crossing of segments. RESULTS: A total of 50 STNs were segmented in 25 patients and proved highly feasible. Although the highest density of motor connections was situated in the dorsolateral STN for all patients, the exact partitioning of segments differed considerably. For all the active electrode contacts situated within the predominantly motor-connected segment of the STN, the average hemi-body Unified Parkinson's Disease Rating Scale motor improvement was 80%; outside this segment, it was 52% (p < 0.01). The Bejjani line was situated in the motor segment for 32 STNs. CONCLUSION: The implementation of 7T T2 and DWI segmentation of the STN in DBS for PD is feasible and offers insight into the location of the motor segment. Segmentation-guided electrode placement is likely to further improve motor response in DBS for PD. However, commercially available DBS software for postprocessing imaging would greatly facilitate widespread implementation.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Doença de Parkinson/tratamento farmacológico , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/fisiologia , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Eletrodos
10.
Mol Psychiatry ; 27(12): 5206-5212, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36071109

RESUMO

Deep brain stimulation (DBS) of the ventral anterior limb of the internal capsule (vALIC) is effective for refractory obsessive-compulsive disorder (OCD). Retrospective evaluation showed that stimulation closer to the supero-lateral branch of the medial forebrain bundle (slMFB), within the vALIC, was associated with better response to DBS. The present study is the first to compare outcomes of DBS targeted at the vALIC using anatomical landmarks and DBS with connectomic tractography-based targeting of the slMFB. We included 20 OCD-patients with anatomical landmark-based DBS of the vALIC that were propensity score matched to 20 patients with tractography-based targeting of electrodes in the slMFB. After one year, we compared severity of OCD, anxiety and depression symptoms, response rates, time to response, number of parameter adjustments, average current, medication usage and stimulation-related adverse effects. There was no difference in Y-BOCS decrease between patients with anatomical landmark-based and tractography-based DBS. Nine (45%) patients with anatomical landmark-based DBS and 13 (65%) patients with tractography-based DBS were responders (BF10 = 1.24). The course of depression and anxiety symptoms, time to response, number of stimulation adjustments or medication usage did not differ between groups. Patients with tractography-based DBS experienced fewer stimulation-related adverse effects than patients with anatomical landmark-based DBS (38 vs 58 transient and 1 vs. 17 lasting adverse effects; BF10 = 14.968). OCD symptoms in patients with anatomical landmark-based DBS of the vALIC and tractography-based DBS of the slMFB decrease equally, but patients with tractography-based DBS experience less adverse effects.


Assuntos
Estimulação Encefálica Profunda , Transtorno Obsessivo-Compulsivo , Humanos , Cápsula Interna , Estudos Retrospectivos , Transtorno Obsessivo-Compulsivo/terapia , Ansiedade , Resultado do Tratamento
12.
Ann Neurol ; 91(5): 602-612, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35150172

RESUMO

OBJECTIVE: The objective of this study was to obtain individual clinical and neuroimaging data of patients undergoing deep brain stimulation (DBS) for essential tremor (ET) from 5 different European centers to identify predictors of outcome and to identify an optimal stimulation site. METHODS: We analyzed retrospectively baseline covariates, pre- and postoperative clinical tremor scores (for 12 months) as well as individual imaging data from 119 patients to obtain individual electrode positions and stimulation volumes. Individual imaging and clinical data were used to calculate a probabilistic stimulation map in normalized space using voxel-wise statistical analysis. Finally, we used this map to train a classifier to predict tremor improvement. RESULTS: Probabilistic mapping of stimulation effects yielded a statistically significant cluster that was associated with a tremor improvement >50%. This cluster of optimal stimulation extended from the posterior subthalamic area to the ventralis intermedius nucleus and coincided with a normative structural connectivity-based cerebellothalamic tract (CTT). The combined features "distance between the stimulation volume and the significant cluster" and "CTT activation" were used as a predictor of tremor improvement. This correctly classified a >50% tremor improvement with a sensitivity of 89% and a specificity of 57%. INTERPRETATION: Our multicenter ET probabilistic stimulation map identified an area of optimal stimulation along the course of the CTT. The results of this study are mainly descriptive until confirmed in independent datasets, ideally through prospective testing. This target will be made openly available and may be used to guide surgical planning and for computer-assisted programming of DBS in the future. ANN NEUROL 2022;91:602-612.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Estimulação Encefálica Profunda/métodos , Tremor Essencial/terapia , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Resultado do Tratamento , Tremor/terapia
14.
JAMA Neurol ; 78(10): 1212-1219, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34491267

RESUMO

Importance: It is unknown if there is a difference in outcome in asleep vs awake deep brain stimulation (DBS) of the subthalamic nucleus for advanced Parkinson disease. Objective: To determine the difference in adverse effects concerning cognition, mood, and behavior between awake and asleep DBS favoring the asleep arm of the study. Design, Setting, and Participants: This study was a single-center prospective randomized open-label blinded end point clinical trial. A total of 187 persons with Parkinson disease were referred for DBS between May 2015 to March 2019. Analysis took place from January 2016 to January 2020. The primary outcome follow-up visit was conducted 6 months after DBS. Interventions: Bilateral subthalamic nucleus DBS was performed while the patient was asleep (under general anesthesia) in 1 study arm and awake in the other study arm. Both arms of the study used a frame-based intraoperative microelectrode recording technique to refine final target placement of the DBS lead. Main Outcomes and Measures: The primary outcome variable was the between-group difference in cognitive, mood, and behavioral adverse effects as measured by a composite score. The secondary outcomes included the Movement Disorders Society Unified Parkinson's Disease Rating Scale, the patient assessment of surgical burden and operative time. Results: A total of 110 patients were randomized to awake (local anesthesia; n = 56; mean [SD] age, 60.0 (7.4) years; 40 [71%] male) or to asleep (general anesthesia; n = 54; mean [SD] age, 61.3 [7.9] years; 38 [70%] male) DBS surgery. The 6-month follow-up visit was completed by 103 participants. The proportion of patients with adverse cognitive, mood, and behavioral effects on the composite score was 15 of 52 (29%) after awake and 11 of 51 (22%) after asleep DBS (odds ratio, 0.7 [95% CI, 0.3-1.7]). There was no difference in improvement in the off-medication Movement Disorders Society Unified Parkinson's Disease Rating Scale Motor Examination scores between groups (awake group: mean [SD], -27.3 [17.5] points; asleep group: mean [SD], -25.3 [14.3] points; mean difference, -2.0 [95% CI, -8.1 to 4.2]). Asleep surgery was experienced as less burdensome by patients and was 26 minutes shorter than awake surgery. Conclusions and Relevance: There was no difference in the primary outcome of asleep vs awake DBS. Future large randomized clinical trials should examine some of the newer asleep based DBS technologies because this study was limited to frame-based microelectrode-guided procedures. Trial Registration: trialregister.nl Identifier: NTR5809.


Assuntos
Anestesia Geral , Anestesia Local , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/cirurgia , Idoso , Feminino , Humanos , Masculino , Microeletrodos , Pessoa de Meia-Idade , Núcleo Subtalâmico/cirurgia , Resultado do Tratamento
15.
Oper Neurosurg (Hagerstown) ; 21(6): 533-539, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34562007

RESUMO

BACKGROUND: Dentato-rubro-thalamic tract (DRT) deep brain stimulation (DBS) suppresses tremor in essential tremor (ET) patients. However, DRT depiction through tractography can vary depending on the included brain regions. Moreover, it is unclear which section of the DRT is optimal for DBS. OBJECTIVE: To evaluate deterministic DRT tractography and tremor control in DBS for ET. METHODS: After DBS surgery, DRT tractography was conducted in 37 trajectories (20 ET patients). Per trajectory, 5 different DRT depictions with various regions of interest (ROI) were constructed. Comparison resulted in a DRT depiction with highest correspondence to intraoperative tremor control. This DRT depiction was subsequently used for evaluation of short-term postoperative adverse and beneficial effects. RESULTS: Postoperative optimized DRT tractography employing the ROI motor cortex, posterior subthalamic area (PSA), and ipsilateral superior cerebellar peduncle and dentate nucleus best corresponded with intraoperative trajectories (92%) and active DBS contacts (93%) showing optimal tremor control. DRT tractography employing a red nucleus or ventral intermediate nucleus of the thalamus (VIM) ROI often resulted in a more medial course. Optimal stimulation was located in the section between VIM and PSA. CONCLUSION: This optimized deterministic DRT tractography strongly correlates with optimal tremor control. This technique is readily implementable for prospective evaluation in DBS target planning for ET.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Estimulação Encefálica Profunda/métodos , Imagem de Tensor de Difusão/métodos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Humanos , Tálamo/diagnóstico por imagem , Tálamo/cirurgia , Tremor
16.
Neurol Ther ; 10(1): 61-73, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33565018

RESUMO

Precise stereotactic targeting of the dorsolateral motor part of the subthalamic nucleus (STN) is paramount for maximizing clinical effectiveness and preventing side effects of deep brain stimulation (DBS) in patients with advanced Parkinson's disease. With recent developments in magnetic resonance imaging (MRI) techniques, direct targeting of the dorsolateral part of the STN is now feasible, together with visualization of the motor fibers in the nearby internal capsule. However, clinically relevant discrepancies were reported when comparing STN borders on MRI to electrophysiological STN borders during microelectrode recordings (MER). Also, one should take into account the possibility of a 3D inaccuracy of up to 2 mm of the applied stereotactic technique. Pneumocephalus and image fusion errors may further increase implantation inaccuracy. Even when implantation has been successful, suboptimal lead anchoring on the skull may cause lead migration during follow-up. Meticulous pre- and intraoperative imaging is therefore indispensable, and so is postoperative imaging when the effects of DBS deteriorate during follow-up. Thus far, most DBS centers employ MRI targeting, multichannel MER, and awake test stimulation in STN surgery, but randomized trials comparing surgery under local versus general anesthesia and additional studies comparing MER-STN borders to high-field MRI-STN may change this clinical practice. Further developments in imaging protocols and improvements in image fusion processes are needed to optimize placement of DBS leads in the dorsolateral motor part of the STN in Parkinson's disease.

17.
Brain Stimul ; 14(1): 192-201, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33385593

RESUMO

BACKGROUND: Notwithstanding the large improvement in motor function in Parkinson's disease (PD) patients treated with deep brain stimulation (DBS), apathy may increase. Postoperative apathy cannot always be related to a dose reduction of dopaminergic medication and stimulation itself may play a role. OBJECTIVE: We studied whether apathy in DBS-treated PD patients could be a stimulation effect. METHODS: In 26 PD patients we acquired apathy scores before and >6 months after DBS of the subthalamic nucleus (STN). Magnetoencephalography recordings (ON and OFF stimulation) were performed ≥6 months after DBS placement. Change in apathy severity was correlated with (i) improvement in motor function and dose reduction of dopaminergic medication, (ii) stimulation location (merged MRI and CT-scans) and (iii) stimulation-related changes in functional connectivity of brain regions that have an alleged role in apathy. RESULTS: Average apathy severity significantly increased after DBS (p < 0.001) and the number of patients considered apathetic increased from two to nine. Change in apathy severity did not correlate with improvement in motor function or dose reduction of dopaminergic medication. For the left hemisphere, increase in apathy was associated with a more dorsolateral stimulation location (p = 0.010). The increase in apathy severity correlated with a decrease in alpha1 functional connectivity of the dorsolateral prefrontal cortex (p = 0.006), but not with changes of the medial orbitofrontal or the anterior cingulate cortex. CONCLUSIONS: The present observations suggest that apathy after STN-DBS is not necessarily related to dose reductions of dopaminergic medication, but may be an effect of the stimulation itself. This highlights the importance of determining optimal DBS settings based on both motor and non-motor symptoms.


Assuntos
Apatia , Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Doença de Parkinson/terapia , Resultado do Tratamento
18.
Stereotact Funct Neurosurg ; 99(3): 187-195, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33207350

RESUMO

INTRODUCTION: The intersection of Bejjani's line with the well-delineated medial subthalamic nucleus (STN) border on MRI has recently been proposed as an individualized reference in subthalamic deep brain stimulation (DBS) surgery for Parkinson's disease (PD). We, therefore, aimed to investigate the applicability across centers of the medial STN border as a patient-specific reference point in STN DBS for PD and explore anatomical variability between left and right mesencephalic area within patients. Furthermore, we aim to evaluate a recently defined theoretic stimulation "hotspot" in a different center. METHODS: Preoperative 3-Tesla T2 and susceptibility-weighted images (SWI) were used to identify the intersection of Bejjani's line with the medial STN border in left and right mesencephalic area. The average stereotactic coordinates of the center of stimulation relative to the medial STN border were compared with the predefined theoretic stimulation "hotspot." RESULTS: Fifty-four patients provided 108 stereotactic coordinates of medial STN borders on both sequences. Significant difference in means was found in the Y-(anteroposterior) and Z-(dorsoventral) directions (T2 vs. SWI; p < 0.001). Mean coordinates in the Y-(anteroposterior) direction differed significantly between left and right mesencephalic area (T2: p < 0.001; SWI: p = 0.021). Sixty-six DBS leads were placed in 36 patients that had finished stimulation programming, and the average stereotactic coordinates of the center of stimulation relative to the medial STN border on T2 sequences were 3.1 mm lateral, 0.7 mm anterior, and 1.8 mm superior, in proximity of the predefined theoretic stimulation "hotspot." CONCLUSION: The medial STN border is applicable across centers as a reference point for STN DBS surgery for PD and seems suitable in order to account for interindividual and intraindividual anatomical variability if one is aware of the discrepancies between T2-weighted imaging and SWI.


Assuntos
Estimulação Encefálica Profunda , Neurocirurgia , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Imageamento por Ressonância Magnética , Doença de Parkinson/diagnóstico por imagem , Doença de Parkinson/cirurgia , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia
19.
Oper Neurosurg (Hagerstown) ; 19(3): E224-E229, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32392290

RESUMO

BACKGROUND: Intraoperative cone-beam computed tomography (iCBCT) allows for rapid 3-dimensional imaging. However, it is currently unknown whether this imaging technique offers sufficient accuracy for stereotactic registration during deep brain stimulation (DBS) procedures. OBJECTIVE: To determine the accuracy of iCBCT, with the O-arm O2 (Medtronic), for stereotactic registration by comparing this modality to stereotactic magnetic resonance imaging (MRI). METHODS: All DBS patients underwent a preoperative non-stereotactic 3 Tesla MRI, stereotactic 1.5 Tesla MRI, stereotactic O-arm iCBCT, postimplantation O-arm iCBCT, and postoperative conventional multidetector computed tomography (CT) scan. We compared stereotactic (X, Y, and Z) coordinates of the anterior commissure (AC), the posterior commissure (PC), and midline reference (MR) between stereotactic MRI and iCBCT. For localisation comparison of electrode contacts, stereotactic coordinates of electrode tips were compared between the postoperative multidetector CT and iCBCT. RESULTS: A total of 20 patients were evaluated. The average absolute difference in stereotactic coordinates of AC, PC, and MR was 0.4 ± 0.4 mm for X, 0.4 ± 0.4 mm for Y, and 0.7 ± 0.5 mm for Z. The average absolute difference in X-, Y-, and Z-coordinates for electrode localisation (N = 34) was 0.3 ± 0.3 mm, 0.6 ± 0.3 mm, and 0.6 ± 0.6 mm. These differences were small enough not to be considered clinically relevant. CONCLUSION: Stereotactic MRI and O-arm iCBCT yield comparable coordinates in pre- and postoperative imaging. Differences found are below the threshold of clinical relevance. Intraoperative O-arm CBCT offers rapid stereotactic registration and evaluation of electrode placement. This increases patient comfort and neurosurgical workflow efficiency.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Estimulação Encefálica Profunda , Cirurgia Assistida por Computador , Eletrodos Implantados , Humanos , Imageamento Tridimensional , Técnicas Estereotáxicas , Tomografia Computadorizada por Raios X
20.
World Neurosurg ; 139: e784-e791, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32371080

RESUMO

OBJECTIVE: We sought to determine the location of kinesthetic cell clusters within the subthalamic nucleus (STN) on magnetic resonance imaging, adjusted for interindividual anatomic variability by employing the medial STN border as a reference point. METHODS: We retrospectively localized microelectrode recording-defined kinesthetic cells on 3-Tesla T2-weighted and susceptibility-weighted images in patients who underwent STN deep brain stimulation for Parkinson disease and averaged the stereotactic coordinates. These locations were calculated relative to the nonindividualized midcommissural point (MCP) and, in order to account for interindividual anatomic variability, also calculated relative to the patient-specific intersection of Bejjani line with the medial STN border. Two example patients were selected in order to visualize the discrepancies between the adjusted and nonadjusted theoretic kinesthetic cell clusters on magnetic resonance imaging. RESULTS: Relative to the MCP, average kinesthetic cell coordinates were 12.3 ± 1.2 mm lateral, 1.7 ± 1.4 mm posterior, and 2.3 ± 1.5 mm inferior. Relative to the medial STN border, mean coordinates were 3.4 ± 1.0 mm lateral, 1.0 ± 1.4 mm anterior, and 1.7 ± 1.5 mm superior on T2-sequences, and on susceptibility-weighted images mean coordinates were 3.2 ± 1.1 mm lateral, 0.8 ± 1.5 mm anterior, and 2.1 ± 1.5 mm superior. The theoretic kinesthetic cell clusters may appear outside the sensorimotor STN when using the MCP, whereas these clusters fall well within the sensorimotor STN when employing the medial STN border as a reference point. CONCLUSIONS: By using the medial STN border as a patient-specific anatomic reference point in STN deep brain stimulation for Parkinson disease, we accounted for interindividual anatomic variability and provided accurate insight in the clustering of kinesthetic cells within the dorsolateral STN.


Assuntos
Mapeamento Encefálico/métodos , Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/fisiologia , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Microeletrodos , Pessoa de Meia-Idade , Neurônios/citologia , Técnicas Estereotáxicas , Núcleo Subtalâmico/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...