Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31861127

RESUMO

This contribution aims to investigate the influence of monthly total rainfall variations on malaria transmission in the Limpopo Province. For this purpose, monthly total rainfall was interpolated from daily rainfall data from weather stations. Annual and seasonal trends, as well as cross-correlation analyses, were performed on time series of monthly total rainfall and monthly malaria cases in five districts of Limpopo Province for the period of 1998 to 2017. The time series analysis indicated that an average of 629.5 mm of rainfall was received over the period of study. The rainfall has an annual variation of about 0.46%. Rainfall amount varied within the five districts, with the northeastern part receiving more rainfall. Spearman's correlation analysis indicated that the total monthly rainfall with one to two months lagged effect is significant in malaria transmission across all the districts. The strongest correlation was noticed in Vhembe (r = 0.54; p-value = <0.001), Mopani (r = 0.53; p-value = <0.001), Waterberg (r = 0.40; p-value =< 0.001), Capricorn (r = 0.37; p-value = <0.001) and lowest in Sekhukhune (r = 0.36; p-value = <0.001). Seasonally, the results indicated that about 68% variation in malaria cases in summer-December, January, and February (DJF)-can be explained by spring-September, October, and November (SON)-rainfall in Vhembe district. Both annual and seasonal analyses indicated that there is variation in the effect of rainfall on malaria across the districts and it is seasonally dependent. Understanding the dynamics of climatic variables annually and seasonally is essential in providing answers to malaria transmission among other factors, particularly with respect to the abrupt spikes of the disease in the province.


Assuntos
Malária/epidemiologia , Chuva , Humanos , Incidência , Malária/transmissão , Estações do Ano , África do Sul/epidemiologia , Tempo (Meteorologia)
2.
Geospat Health ; 14(1)2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31099518

RESUMO

There has been a conspicuous increase in malaria cases since 2016/2017 over the three malaria-endemic provinces of South Africa. This increase has been linked to climatic and environmental factors. In the absence of adequate traditional environmental/climatic data covering ideal spatial and temporal extent for a reliable warning system, remotely sensed data are useful for the investigation of the relationship with, and the prediction of, malaria cases. Monthly environmental variables such as the normalised difference vegetation index (NDVI), the enhanced vegetation index (EVI), the normalised difference water index (NDWI), the land surface temperature for night (LSTN) and day (LSTD), and rainfall were derived and evaluated using seasonal autoregressive integrated moving average (SARIMA) models with different lag periods. Predictions were made for the last 56 months of the time series and were compared to the observed malaria cases from January 2013 to August 2017. All these factors were found to be statistically significant in predicting malaria transmission at a 2-months lag period except for LSTD which impact the number of malaria cases negatively. Rainfall showed the highest association at the two-month lag time (r=0.74; P<0.001), followed by EVI (r=0.69; P<0.001), NDVI (r=0.65; P<0.001), NDWI (r=0.63; P<0.001) and LSTN (r=0.60; P<0.001). SARIMA without environmental variables had an adjusted R2 of 0.41, while SARIMA with total monthly rainfall, EVI, NDVI, NDWI and LSTN were able to explain about 65% of the variation in malaria cases. The prediction indicated a general increase in malaria cases, predicting about 711 against 648 observed malaria cases. The development of a predictive early warning system is imperative for effective malaria control, prevention of outbreaks and its subsequent elimination in the region.


Assuntos
Monitoramento Ambiental/instrumentação , Malária/epidemiologia , Modelos Estatísticos , Tempo (Meteorologia) , Clima , Humanos , África do Sul/epidemiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-29117114

RESUMO

The north-eastern parts of South Africa, comprising the Limpopo Province, have recorded a sudden rise in the rate of malaria morbidity and mortality in the 2017 malaria season. The epidemiological profiles of malaria, as well as other vector-borne diseases, are strongly associated with climate and environmental conditions. A retrospective understanding of the relationship between climate and the occurrence of malaria may provide insight into the dynamics of the disease's transmission and its persistence in the north-eastern region. In this paper, the association between climatic variables and the occurrence of malaria was studied in the Mutale local municipality in South Africa over a period of 19-year. Time series analysis was conducted on monthly climatic variables and monthly malaria cases in the Mutale municipality for the period of 1998-2017. Spearman correlation analysis was performed and the Seasonal Autoregressive Integrated Moving Average (SARIMA) model was developed. Microsoft Excel was used for data cleaning, and statistical software R was used to analyse the data and develop the model. Results show that both climatic variables' and malaria cases' time series exhibited seasonal patterns, showing a number of peaks and fluctuations. Spearman correlation analysis indicated that monthly total rainfall, mean minimum temperature, mean maximum temperature, mean average temperature, and mean relative humidity were significantly and positively correlated with monthly malaria cases in the study area. Regression analysis showed that monthly total rainfall and monthly mean minimum temperature (R² = 0.65), at a two-month lagged effect, are the most significant climatic predictors of malaria transmission in Mutale local municipality. A SARIMA (2,1,2) (1,1,1) model fitted with only malaria cases has a prediction performance of about 51%, and the SARIMAX (2,1,2) (1,1,1) model with climatic variables as exogenous factors has a prediction performance of about 72% in malaria cases. The model gives a close comparison between the predicted and observed number of malaria cases, hence indicating that the model provides an acceptable fit to predict the number of malaria cases in the municipality. To sum up, the association between the climatic variables and malaria cases provides clues to better understand the dynamics of malaria transmission. The lagged effect detected in this study can help in adequate planning for malaria intervention.


Assuntos
Clima , Malária/epidemiologia , Cidades/epidemiologia , Feminino , Humanos , Incidência , Masculino , Morbidade , Análise de Regressão , Estudos Retrospectivos , Estações do Ano , África do Sul/epidemiologia , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA