Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 126(8): 087001, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709756

RESUMO

The discovery of superconductivity in a d^{9-δ} nickelate has inspired disparate theoretical perspectives regarding the essential physics of this class of materials. A key issue is the magnitude of the magnetic superexchange, which relates to whether cuprate-like high-temperature nickelate superconductivity could be realized. We address this question using Ni L-edge and O K-edge spectroscopy of the reduced d^{9-1/3} trilayer nickelates R_{4}Ni_{3}O_{8} (where R=La, Pr) and associated theoretical modeling. A magnon energy scale of ∼80 meV resulting from a nearest-neighbor magnetic exchange of J=69(4) meV is observed, proving that d^{9-δ} nickelates can host a large superexchange. This value, along with that of the Ni-O hybridization estimated from our O K-edge data, implies that trilayer nickelates represent an intermediate case between the infinite-layer nickelates and the cuprates. Layered nickelates thus provide a route to testing the relevance of superexchange to nickelate superconductivity.

2.
Nat Commun ; 11(1): 6003, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33243978

RESUMO

Nickelates are a rich class of materials, ranging from insulating magnets to superconductors. But for stoichiometric materials, insulating behavior is the norm, as for most late transition metal oxides. Notable exceptions are the 3D perovskite LaNiO3, an unconventional paramagnetic metal, and the layered Ruddlesden-Popper phases R4Ni3O10, (R = La, Pr, Nd). The latter are particularly intriguing because they exhibit an unusual metal-to-metal transition. Here, we demonstrate that this transition results from an incommensurate density wave with both charge and magnetic character that lies closer in its behavior to the metallic density wave seen in chromium metal than the insulating stripes typically found in single-layer nickelates like La2-xSrxNiO4. We identify these intertwined density waves as being Fermi surface-driven, revealing a novel ordering mechanism in this nickelate that reflects a coupling among charge, spin, and lattice degrees of freedom that differs not only from the single-layer materials, but from the 3D perovskites as well.

3.
Phys Rev Lett ; 122(24): 247201, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-31322403

RESUMO

Trilayer nickelates, which exhibit a high degree of orbital polarization combined with an electron count (d^{8.67}) corresponding to overdoped cuprates, have been identified as a promising candidate platform for achieving high-T_{c} superconductivity. One such material, La_{4}Ni_{3}O_{8}, undergoes a semiconductor-insulator transition at ∼105 K, which was recently shown to arise from the formation of charge stripes. However, an outstanding issue has been the origin of an anomaly in the magnetic susceptibility at the transition and whether it signifies the formation of spin stripes akin to single layer nickelates. Here we report single crystal neutron diffraction measurements (both polarized and unpolarized) that establish that the ground state is indeed magnetic. The ordering is modeled as antiferromagnetic spin stripes that are commensurate with the charge stripes, the magnetic ordering occurring in individual trilayers that are essentially uncorrelated along the crystallographic c axis. A comparison of the charge and spin stripe order parameters reveals that, in contrast to single-layer nickelates such as La_{2-x}Sr_{x}NiO_{4} as well as related quasi-2D oxides including manganites, cobaltates, and cuprates, these orders uniquely appear simultaneously, thus demonstrating a stronger coupling between spin and charge than in these related low-dimensional correlated oxides.

4.
Nat Commun ; 9(1): 3280, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115927

RESUMO

An ordinary Hall effect in a conductor arises due to the Lorentz force acting on the charge carriers. In ferromagnets, an additional contribution to the Hall effect, the anomalous Hall effect (AHE), appears proportional to the magnetization. While the AHE is not seen in a collinear antiferromagnet, with zero net magnetization, recently it has been shown that an intrinsic AHE can be non-zero in non-collinear antiferromagnets as well as in topological materials hosting Weyl nodes near the Fermi energy. Here we report a large anomalous Hall effect with Hall conductivity of 27 Ω-1 cm-1 in a chiral-lattice antiferromagnet, CoNb3S6 consisting of a small intrinsic ferromagnetic component (≈0.0013 µB per Co) along c-axis. This small moment alone cannot explain the observed size of the AHE. We attribute the AHE to either formation of a complex magnetic texture or the combined effect of the small intrinsic moment on the electronic band structure.

5.
J Phys Condens Matter ; 28(23): 235601, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27160492

RESUMO

We report magnetic field dependent transport measurements on a single crystal of cubic YSb together with first principles calculations of its electronic structure. The transverse magnetoresistance does not saturate up to 9 T and attains a value of 75 000% at 1.8 K. The Hall coefficient is electron-like at high temperature, changes sign to hole-like between 110 and 50 K, and again becomes electron-like below 50 K. First principles calculations show that YSb is a compensated semimetal with a qualitatively similar electronic structure to that of isostructural LaSb and LaBi, but with larger Fermi surface volume. The measured electron carrier density and Hall mobility calculated at 1.8 K, based on a single band approximation, are [Formula: see text] cm(-3) and [Formula: see text] cm(2) Vs(-1), respectively. These values are comparable with those reported for LaBi and LaSb. Like LaBi and LaSb, YSb undergoes a magnetic field-induced metal-insulator-like transition below a characteristic temperature T m, with resistivity saturation below 13 K. Thickness dependent electrical resistance measurements show a deviation of the resistance behavior from that expected for a normal metal; however, they do not unambiguously establish surface conduction as the mechanism for the resistivity plateau.

6.
J Phys Condens Matter ; 22(50): 505602, 2010 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-21406803

RESUMO

Electronic structure calculations have been performed on the compound CoS(2), an itinerant ferromagnet whose magnetic properties can be understood in terms of spin fluctuation theory. We have identified nesting features in the Fermi surface of the compound, active for long wavelength spin fluctuations. The electronic structure of the material is close to a half-metal. We show the importance of introducing spin-orbit coupling (SOC) in the calculations, which partially destroys the half-metallicity of the material. By means of transport properties calculations, we have quantified the influence of SOC in the conductivity at room temperature. Analyzing the effect of SOC helps in understanding the negative magnetoresistance of the material, whose conductivity varies within a few per cent with the introduction of small perturbations in the states around the Fermi level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...