Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 61(46): 18629-18639, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36345918

RESUMO

Two three-dimensional (3-D) polycyanidometallate-based luminescent thermometers with the general formula {Ln4Co4(CN)24(4-benpyo)17(H2O)·7H2O}n Ln = (Dy(III)(1), Eu(III)(2)), based on the red-emissive diamagnetic linker [Co(CN)6]3- and the bulky pyridine derivative that possesses the N-oxide moiety, 4-benzyloxy-pyridine N-oxide (benpyo), were prepared for the first time. The structure of compound 1 has been determined by single-crystal X-ray crystallography while the purity and structure of 2 have been confirmed by CHN, Fourier transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD) analysis. Magnetic AC susceptibility measurements at zero field show no single-molecule magnet (SMM) behavior indicating fast relaxation operating in 1. Upon application of an optimal field of 2 kOe, the SMM character of compound 1 is revealed while the τ(Τ) can be reproduced solely considering the Raman process τ-1 = CTn with C = 7.0901(3) s-1 K-n and n = 3.58(1), indicating that a high density of low-lying states and optical as well as acoustic phonons play a major role in the relaxation mechanism. Micron-sized superconducting quantum interference device (µ-SQUID) loops show a very narrow opening in agreement with the AC susceptibility studies and complete active space self-consistent field (CASSCF) calculations. The interaction operating between the Dy(III) ions was quantified from CASSCF calculations. Good agreement is found by fitting the experimental DC χMΤ(Τ) and M(H), employing the Lines model, with JLines = -0.087 cm-1 (-0.125 K). The excitation spectra of compound 2 are used for temperature sensing in the 25-325 nm range with a maximum relative thermal sensitivity, Sr = 0.6% K-1 at 325 K, whereas compound 1 operates as a luminescent thermometer based on its emission features in the temperature range of 16-350 K with Sr ≈ 2.3% K-1 at 240 K.

2.
Dalton Trans ; 51(21): 8208-8216, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35546570

RESUMO

The 1 : 1 : 1 reaction of YbCl3·6H2O, K3[Co(CN)6] and bpyO2 in H2O has provided access to a complex with formula [YbCo(CN)6(bpyO2)2(H2O)3]·4H2O (1) in a very good yield while its structure has been determined by single-crystal X-ray crystallography and characterised based on elemental analyses and IR spectra. Magnetic susceptibility studies showed the complex to be a field induced single molecule magnet, as confirmed by µ-SQUID measurements. CASSCF calculations confirm the existence of a mJ = 7/2 ground state, with rather large transverse components, responsible for the fast relaxation characteristic of compound 1 at zero DC field, which is reduced upon application of DC fields. Moreover, a combination of luminescence studies along with CASSCF calculation allows the identification of the band structure of the complex, which is ultimately related to its electronic properties. Compound 1 operates as a luminescent thermometer in the 125-300 K range with a maximum relative thermal sensitivity of ≈0.1% K-1 at 180 K.

3.
Materials (Basel) ; 13(5)2020 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-32121128

RESUMO

Gold nanoparticles (AuNPs) are one of the most studied nanosystems with great potential for biomedical applications, including cancer therapy. Although some gold-based systems have been described, the use of green and faster methods that allow the control of their properties is of prime importance. Thus, the present study reports a one-minute microwave-assisted synthesis of fucoidan-coated AuNPs with controllable size and high antitumoral activity. The NPs were synthesized using a fucoidan-enriched fraction extracted from Fucus vesiculosus, as the reducing and capping agent. The ensuing monodispersed and spherical NPs exhibit tiny diameters between 5.8 and 13.4 nm for concentrations of fucoidan between 0.5 and 0.05% (w/v), respectively, as excellent colloidal stability in distinct solutions and culture media. Furthermore, the NPs present antitumoral activity against three human tumor cell lines (MNT-1, HepG2, and MG-63), and flow cytometry in combination with dark-field imaging confirmed the cellular uptake of NPs by MG-63 cell line.

4.
Nanoscale ; 11(15): 7097-7101, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30706065

RESUMO

In this communication, we report the post-synthetic functionalization of K+/Ni2+/[Cr(CN)6]3- Prussian blue analogue (PBA) nanoparticles by the 2-aminoanthracene luminophore to yield a bifunctional magneto-luminescent nanosystem. The photoluminescence properties of the fluorophore are found modified by the confinement effect upon adsorption, while the magnetic behavior of PBA is preserved.

5.
Nanoscale Adv ; 1(7): 2537-2545, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-36132713

RESUMO

Transparent upconverting hybrid nanocomposites are exciting materials for advanced applications such as 3D displays, nanosensors, solar energy converters, and fluorescence biomarkers. This work presents a simple strategy to disperse upconverting ß-NaYF4:Yb3+/Er3+ or Tm3+ nanoparticles into low cost, widely used and easy-to-process polydimethylsiloxane (PDMS)-based organic-inorganic hybrids. The upconverting hybrids were shaped as monoliths, films or powders displaying in the whole volume Tm3+ or Er3+ emissions (in the violet/blue and green/red spectral regions, respectively). For the first time, hyperspectral microscopy allows the identification at the submicron scale of differences in the hybrids' emission colour, due to variations in the relative intensity of the distinct components of the upconversion spectrum. The effect is attributed to the size distribution of the agglomerates of nanoparticles, highlighting the importance of studying the emission at submicron scales, since this effect is not observable in measurements recorded in larger areas.

6.
Colloids Surf B Biointerfaces ; 157: 373-380, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28623694

RESUMO

The investigation of nanoparticles and their interaction with bio-macromolecules have become an important issue; the widely discussed protein corona around nanoparticles and their biological fate in general have drawn particular attention. Here, we focus on nanoclay dispersions and the use of solvatochromic fluorescent dyes (Dansyl and Coumarin 153) for monitoring the interaction with two model proteins, bovine serum albumin and ß-lactoglobulin. On one hand, these dyes are poorly emissive in water, but experience a boost in their fluorescence when adsorbed into the hydrophobic domains of proteins. On the other hand, (nano)clays and clay minerals have previously been investigated in terms of their individual protein adsorption isotherms and their usefulness for the solubilization of water-insoluble dyes into an aqueous environment. In the following, we have combined all three individual parts (nanoclay, fluorophore and protein) in dispersions in a wide range of concentration ratios to systematically study the various adsorption processes via fluorescence techniques. In order to clarify the extent of dye diffusion and adsorption-desorption equilibria in the investigations, nanoclay hybrids with an adsorbed dye (Coumarin 153) and a covalently conjugated dye (Dansyl) were compared. The results suggest that the fluorescence progression of protein titration curves correlate with the amount of protein adsorbed, matching their reported adsorption isotherms on hectorite clays. Furthermore, experimental data on the protein monolayer formation around the nanoclays could be extracted due to only minor alterations of the dispersions' optical quality and transparency. In this manner, a fluorescence-based monitor for the formation of the globular protein layer around the nanoclay was realized.


Assuntos
Fluorescência , Proteínas/química , Silicatos/química , Adsorção , Interações Hidrofóbicas e Hidrofílicas , Propriedades de Superfície
7.
Nanotechnology ; 27(32): 325703, 2016 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-27348305

RESUMO

The light emission properties of silicon crystalline nanoparticles (SiNPs) have been investigated using steady-state and time-resolved photoluminescence measurements carried out at 12 K and at room temperature. To enable a comparative study of the role of surface terminal groups on the optical properties, we investigated SiNPs-H ensembles with the same mean NP diameter but differing on the surface termination, namely organic-functionalized with 1-dodecene (SiNPs-C12) and H-terminated (SiNPs-H). We show that although the spectral dependence of the light emission is rather unaffected by surface termination, characterized by a single broad band peaking at ∼1.64 eV, both the exciton recombination lifetimes and quantum yields display a pronounced dependence on the surface termination. Exciton lifetimes and quantum yields are found to be significantly lower in SiNPs-H compared SiNPs-C12. This difference is due to distinct non-radiative recombination probabilities resulting from inter-NP exciton migration, which in SiNPs-C12 is inhibited by the energy barriers imposed by the bulky surface groups. The surface groups of organic-terminated SiPs are responsible for the inhibition of inter-NP exciton transfer, yielding a higher quantum yield compared to SiNPs-H. The surface oxidation of SiNPs-C12 leads to the appearance of a phenomenon of an exciton transference from to the Si core to oxide-related states that contribute to light emission. These excitons recombine radiatively, explaining why the emission quantum of the organic-terminated SiNPs is the same after surface oxidation of SiNPs-C12.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...