Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Sci Adv ; 9(2): eabo7605, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630508

RESUMO

Execution of lineage-specific differentiation programs requires tight coordination between many regulators including Ten-eleven translocation (TET) family enzymes, catalyzing 5-methylcytosine oxidation in DNA. Here, by using Keratin 14-Cre-driven ablation of Tet genes in skin epithelial cells, we demonstrate that ablation of Tet2/Tet3 results in marked alterations of hair shape and length followed by hair loss. We show that, through DNA demethylation, Tet2/Tet3 control chromatin accessibility and Dlx3 binding and promoter activity of the Krt25 and Krt28 genes regulating hair shape, as well as regulate interactions between the Krt28 gene promoter and distal enhancer. Moreover, Tet2/Tet3 also control three-dimensional chromatin topology in Keratin type I/II gene loci via DNA methylation-independent mechanisms. These data demonstrate the essential roles for Tet2/3 in establishment of lineage-specific gene expression program and control of Dlx3/Krt25/Krt28 axis in hair follicle epithelial cells and implicate modulation of DNA methylation as a novel approach for hair growth control.


Assuntos
Diferenciação Celular , DNA , Dioxigenases , Regiões Promotoras Genéticas , Diferenciação Celular/genética , Cromatina/genética , Cromatina/metabolismo , Dioxigenases/genética , Dioxigenases/metabolismo , DNA/metabolismo , Metilação de DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células Epiteliais/metabolismo , Regiões Promotoras Genéticas/fisiologia
3.
J Invest Dermatol ; 142(11): 2853-2863.e4, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35691364

RESUMO

Naked mole-rats (NMRs) (Heterocephalus glaber) are long-lived mammals that possess a natural resistance to cancer and other age-related pathologies, maintaining a healthy life span >30 years. In this study, using immunohistochemical and RNA-sequencing analyses, we compare skin morphology, cellular composition, and global transcriptome signatures between young and aged (aged 3‒4 vs. 19‒23 years, respectively) NMRs. We show that similar to aging in human skin, aging in NMRs is accompanied by a decrease in epidermal thickness; keratinocyte proliferation; and a decline in the number of Merkel cells, T cells, antigen-presenting cells, and melanocytes. Similar to that in human skin aging, expression levels of dermal collagens are decreased, whereas matrix metalloproteinase 9 and matrix metalloproteinase 11 levels increased in aged versus in young NMR skin. RNA-sequencing analyses reveal that in contrast to human or mouse skin aging, the transcript levels of several longevity-associated (Igfbp3, Igf2bp3, Ing2) and tumor-suppressor (Btg2, Cdkn1a, Cdkn2c, Dnmt3a, Hic1, Socs3, Sfrp1, Sfrp5, Thbs1, Tsc1, Zfp36) genes are increased in aged NMR skin. Overall, these data suggest that specific features in the NMR skin aging transcriptome might contribute to the resistance of NMRs to spontaneous skin carcinogenesis and provide a platform for further investigations of NMRs as a model organism for studying the biology and disease resistance of human skin.


Assuntos
Proteínas Imediatamente Precoces , Envelhecimento da Pele , Animais , Humanos , Camundongos , Genes Supressores de Tumor , Proteínas de Homeodomínio/genética , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Longevidade/genética , Metaloproteinase 11 da Matriz/genética , Metaloproteinase 11 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Ratos-Toupeira/genética , Ratos-Toupeira/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , RNA/metabolismo , Envelhecimento da Pele/genética , Proteínas Supressoras de Tumor/genética
4.
J Invest Dermatol ; 142(1): 12-14, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34565558

RESUMO

Histone deacetylases (HDACs) induce gene repression and modify the activity of nonhistone proteins. In a new article in the Journal of Investigative Dermatology, Zhu et al. (2021) demonstrate essential roles for HDAC1/2 in maintaining keratinocyte proliferation and survival in adult epidermis and basal cell carcinoma, thus providing a rationale for using HDAC inhibitors for the treatment of hyperproliferative and neoplastic skin disorders.


Assuntos
Cromatina , Histona Desacetilases , Biologia , Cromatina/genética , Epiderme , Inibidores de Histona Desacetilases/uso terapêutico , Histona Desacetilases/genética , Homeostase
6.
Lasers Surg Med ; 51(4): 370-382, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30168605

RESUMO

BACKGROUND AND OBJECTIVE: Visible light has beneficial effects on cutaneous wound healing, but the role of potential photoreceptors in human skin is unknown. In addition, inconsistency in the parameters of blue and red light-based therapies for skin conditions makes interpretation difficult. Red light can activate cytochrome c oxidase and has been proposed as a wound healing therapy. UV-blue light can activate Opsin 1-SW, Opsin 2, Opsin 3, Opsin 4, and Opsin 5 receptors, triggering biological responses, but their role in human skin physiology is unclear. MATERIALS AND METHODS: Localization of Opsins was analyzed in situ in human skin derived from face and abdomen by immunohistochemistry. An ex vivo human skin wound healing model was established and expression of Opsins confirmed by immunohistochemistry. The rate of wound closure was quantitated after irradiation with blue and red light and mRNA was extracted from the regenerating epithelial tongue by laser micro-dissection to detect changes in Opsin 3 (OPN3) expression. Retention of the expression of Opsins in primary cultures of human epidermal keratinocytes and dermal fibroblasts was confirmed by qRT-PCR and immunocytochemistry. Modulation of metabolic activity by visible light was studied. Furthermore, migration in a scratch-wound assay, DNA synthesis and differentiation of epidermal keratinocytes was established following irradiation with blue light. A role for OPN3 in keratinocytes was investigated by gene silencing. RESULTS: Opsin receptors (OPN1-SW, 3 and 5) were similarly localized in the epidermis of human facial and abdominal skin in situ. Corresponding expression was confirmed in the regenerating epithelial tongue of ex vivo wounds after 2 days in culture, and irradiation with blue light stimulated wound closure, with a corresponding increase in OPN3 expression. Expression of Opsins was retained in primary cultures of epidermal keratinocytes and dermal fibroblasts. Both blue and red light stimulated the metabolic activity of cultured keratinocytes. Low levels of blue light reduced DNA synthesis and stimulated differentiation of keratinocytes. While low levels of blue light did not alter keratinocyte migration in a scratch wound assay, higher levels inhibited migration. Gene silencing of OPN3 in keratinocytes was effective (87% reduction). The rate of DNA synthesis in OPN3 knockdown keratinocytes did not change following irradiation with blue light, however, the level of differentiation was decreased. CONCLUSIONS: Opsins are expressed in the epidermis and dermis of human skin and in the newly regenerating epidermis following wounding. An increase in OPN3 expression in the epithelial tongue may be a potential mechanism for the stimulation of wound closure by blue light. Since keratinocytes and fibroblasts retain their expression of Opsins in culture, they provide a good model to investigate the mechanism of blue light in wound healing responses. Knockdown of OPN3 led to a reduction in early differentiation of keratinocytes following irradiation with blue light, suggesting OPN3 is required for restoration of the barrier function. Understanding the function and relationship of different photoreceptors and their response to specific light parameters will lead to the development of reliable light-based therapies for cutaneous wound healing. Lasers Surg. Med. © 2018 Wiley Periodicals, Inc.


Assuntos
Luz , Terapia com Luz de Baixa Intensidade/métodos , Opsinas/metabolismo , Pele/efeitos da radiação , Lesões dos Tecidos Moles/terapia , Cicatrização/efeitos da radiação , Biomarcadores/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Técnicas In Vitro , Pele/lesões , Pele/metabolismo , Lesões dos Tecidos Moles/metabolismo
7.
PLoS Genet ; 13(9): e1006966, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28863138

RESUMO

Mammalian genomes contain several dozens of large (>0.5 Mbp) lineage-specific gene loci harbouring functionally related genes. However, spatial chromatin folding, organization of the enhancer-promoter networks and their relevance to Topologically Associating Domains (TADs) in these loci remain poorly understood. TADs are principle units of the genome folding and represents the DNA regions within which DNA interacts more frequently and less frequently across the TAD boundary. Here, we used Chromatin Conformation Capture Carbon Copy (5C) technology to characterize spatial chromatin interaction network in the 3.1 Mb Epidermal Differentiation Complex (EDC) locus harbouring 61 functionally related genes that show lineage-specific activation during terminal keratinocyte differentiation in the epidermis. 5C data validated by 3D-FISH demonstrate that the EDC locus is organized into several TADs showing distinct lineage-specific chromatin interaction networks based on their transcription activity and the gene-rich or gene-poor status. Correlation of the 5C results with genome-wide studies for enhancer-specific histone modifications (H3K4me1 and H3K27ac) revealed that the majority of spatial chromatin interactions that involves the gene-rich TADs at the EDC locus in keratinocytes include both intra- and inter-TAD interaction networks, connecting gene promoters and enhancers. Compared to thymocytes in which the EDC locus is mostly transcriptionally inactive, these interactions were found to be keratinocyte-specific. In keratinocytes, the promoter-enhancer anchoring regions in the gene-rich transcriptionally active TADs are enriched for the binding of chromatin architectural proteins CTCF, Rad21 and chromatin remodeler Brg1. In contrast to gene-rich TADs, gene-poor TADs show preferential spatial contacts with each other, do not contain active enhancers and show decreased binding of CTCF, Rad21 and Brg1 in keratinocytes. Thus, spatial interactions between gene promoters and enhancers at the multi-TAD EDC locus in skin epithelial cells are cell type-specific and involve extensive contacts within TADs as well as between different gene-rich TADs, forming the framework for lineage-specific transcription.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , DNA Helicases/genética , Proteínas Nucleares/genética , Fosfoproteínas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Animais , Fator de Ligação a CCCTC , Proteínas de Ciclo Celular , Montagem e Desmontagem da Cromatina/genética , Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Epiderme/metabolismo , Epigênese Genética , Genoma , Queratinócitos , Camundongos , Regiões Promotoras Genéticas , Pele/metabolismo
9.
J Invest Dermatol ; 137(10): 2157-2167, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28595999

RESUMO

The maintenance of a proper nuclear architecture and three-dimensional organization of the genes, enhancer elements, and transcription machinery plays an essential role in tissue development and regeneration. Here we show that in the developing skin, epidermal progenitor cells of mice lacking p63 transcription factor display alterations in the nuclear shape accompanied by a marked decrease in expression of several nuclear envelope-associated components (Lamin B1, Lamin A/C, Sun1, Nesprin-3, Plectin) compared with controls. Furthermore, chromatin immunoprecipitation-quantitative PCR assay showed enrichment of p63 on Sun1, Syne3, and Plec promoters, suggesting them as p63 targets. Alterations in the nuclei shape and expression of nuclear envelope-associated proteins were accompanied by altered distribution patterns of the repressive histone marks trimethylation on lysine 27 of histone H3, trimethylation on lysine 9 of histone H3, and heterochromatin protein 1-alpha in p63-null keratinocytes. These changes were also accompanied by downregulation of the transcriptional activity and relocation of the keratinocyte-specific gene loci away from the sites of active transcription toward the heterochromatin-enriched repressive nuclear compartments in p63-null cells. These data demonstrate functional links between the nuclear envelope organization, chromatin architecture, and gene expression in keratinocytes and suggest nuclear envelope-associated genes as important targets mediating p63-regulated gene expression program in the epidermis.


Assuntos
Epiderme/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Queratinócitos/metabolismo , Fosfoproteínas/genética , Transativadores/genética , Animais , Diferenciação Celular , Núcleo Celular/metabolismo , Epiderme/patologia , Humanos , Queratinócitos/patologia , Camundongos , Modelos Animais , Membrana Nuclear/genética , Membrana Nuclear/metabolismo , Fosfoproteínas/biossíntese , RNA/genética , Transativadores/biossíntese , Fatores de Transcrição/genética , Transcrição Gênica
10.
J Invest Dermatol ; 137(5): e93-e99, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28411854

RESUMO

Three-dimensional organization of transcription in the nucleus and mechanisms controlling the global chromatin folding, including spatial interactions between the genes, noncoding genome elements, and epigenetic and transcription machinery, are essential for establishing lineage-specific gene expression programs during cell differentiation. Spatial chromatin interactions in the nucleus involving gene promoters and distal regulatory elements are currently considered major forces that drive cell differentiation and genome evolution in general, and such interactions are substantially reorganized during many pathological conditions. During terminal differentiation of the epidermal keratinocytes, the nucleus undergoes programmed transformation from highly active status, associated with execution of the genetic program of epidermal barrier formation, to a fully inactive condition and finally becomes a part of the keratinized cells of the cornified epidermal layer. This transition is accompanied by marked remodeling of the three-dimensional nuclear organization and microanatomy, including changes in the spatial arrangement of lineage-specific genes, nuclear bodies, and heterochromatin. This mini-review highlights the important landmarks in the accumulation of our current knowledge on three-dimensional organization of the nucleus, spatial arrangement of the genes, and their distal regulatory elements, and it provides an update on the mechanisms that control higher-order chromatin remodeling in the context of epidermal keratinocyte differentiation in the skin.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Regulação da Expressão Gênica/genética , Queratinócitos/citologia , Animais , Diferenciação Celular/genética , Núcleo Celular/fisiologia , Cromatina/metabolismo , Epiderme/metabolismo , Heterocromatina/metabolismo , Humanos , Pele/citologia
11.
J Invest Dermatol ; 136(8): 1538-1540, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27450498

RESUMO

The Polycomb group proteins are transcriptional repressors that are critically important in the control of stem cell activity and maintenance of the identity of differentiated cells. Polycomb proteins interact with each other to form chromatin-associated repressive complexes (Polycomb repressive complexes 1 and 2) leading to chromatin compaction and gene silencing. However, the roles of the distinct components of the Polycomb repressive complex 2 in the control of skin development and keratinocyte differentiation remain obscure. Dauber et al. demonstrate the conditional ablations of three essential Polycomb repressive complex 2 subunits (EED, Suz12, or Ezh1/2) in the epidermal progenitors result in quite similar skin phenotypes including premature acquisition of a functional epidermal barrier, formation of ectopic Merkel cells, and defective postnatal hair follicle development. The reported data demonstrate that in skin epithelia, EED, Suz12, and Ezh1/2 function largely as subunits of the Polycomb repressive complex 2, which is important in the context of data demonstrating their independent activities in other cell types. The report provides an important platform for further analyses of the role of distinct Polycomb components in the control of gene expression programs in the disorders of epidermal differentiation, such as psoriasis and epidermal cancer.


Assuntos
Folículo Piloso , Queratinócitos , Proteína Potenciadora do Homólogo 2 de Zeste , Humanos , Complexo Repressor Polycomb 2/genética , Proteínas do Grupo Polycomb , Proteínas Repressoras/genética , Pele
12.
J Invest Dermatol ; 136(3): 557-559, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26902124

RESUMO

Chemotherapy-induced hair loss is one of the most devastating side effects of cancer treatment. To study the effects of chemotherapeutic agents on the hair follicle, a number of experimental models have been proposed. Yoon et al. report that transplantation of human scalp hair follicles onto chemotherapy-treated immunodeficient mice serves as an excellent in vivo model for chemotherapy-induced hair loss. Yoon et al. demonstrate that (i) the response of human hair follicles grafted onto immunodeficient mice to cyclophosphamide resembles the key features of the chemotherapy-induced hair loss seen in patients with cancer and (ii) this human in vivo model for chemotherapy-induced hair loss is closer to clinical reality than to any earlier models. Undoubtedly, this model will serve as a valuable tool for analyses of the mechanisms that underlie this devastating side effect of anti-cancer therapy.


Assuntos
Alopecia/induzido quimicamente , Alopecia/patologia , Ciclofosfamida/efeitos adversos , Folículo Piloso/efeitos dos fármacos , Animais , Humanos
13.
J Cell Biol ; 212(1): 77-89, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26711500

RESUMO

During development, multipotent progenitor cells establish lineage-specific programmers of gene activation and silencing underlying their differentiation into specialized cell types. We show that the Polycomb component Cbx4 serves as a critical determinant that maintains the epithelial identity in the developing epidermis by repressing nonepidermal gene expression programs. Cbx4 ablation in mice results in a marked decrease of the epidermal thickness and keratinocyte (KC) proliferation associated with activation of numerous neuronal genes and genes encoding cyclin-dependent kinase inhibitors (p16/p19 and p57). Furthermore, the chromodomain- and SUMO E3 ligase-dependent Cbx4 activities differentially regulate proliferation, differentiation, and expression of nonepidermal genes in KCs. Finally, Cbx4 expression in KCs is directly regulated by p63 transcription factor, whereas Cbx4 overexpression is capable of partially rescuing the effects of p63 ablation on epidermal development. These data demonstrate that Cbx4 plays a crucial role in the p63-regulated program of epidermal differentiation, maintaining the epithelial identity and proliferative activity in KCs via repression of the selected nonepidermal lineage and cell cycle inhibitor genes.


Assuntos
Linhagem da Célula , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Epitélio/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Epitélio/crescimento & desenvolvimento , Ligases , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexo Repressor Polycomb 1/deficiência , Complexo Repressor Polycomb 1/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Ubiquitina-Proteína Ligases/deficiência , Ubiquitina-Proteína Ligases/genética
14.
J Investig Dermatol Symp Proc ; 17(2): 30-2, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26551942

RESUMO

The epidermal differentiation program is regulated at several levels including signaling pathways, lineage-specific transcription factors, and epigenetic regulators that establish well-coordinated process of terminal differentiation resulting in formation of the epidermal barrier. The epigenetic regulatory machinery operates at several levels including modulation of covalent DNA/histone modifications, as well as through higher-order chromatin remodeling to establish long-range topological interactions between the genes and their enhancer elements. Epigenetic regulators exhibit both activating and repressive effects on chromatin in keratinocytes (KCs): whereas some of them promote terminal differentiation, the others stimulate proliferation of progenitor cells, as well as inhibit premature activation of terminal differentiation-associated genes. Transcription factor-regulated and epigenetic mechanisms are highly connected, and the p63 transcription factor has an important role in the higher-order chromatin remodeling of the KC-specific gene loci via direct control of the genome organizer Satb1 and ATP-dependent chromatin remodeler Brg1. However, additional efforts are required to fully understand the complexity of interactions between distinct transcription factors and epigenetic regulators in the control of KC differentiation. Further understanding of these interactions and their alterations in different pathological skin conditions will help to progress toward the development of novel approaches for the treatment of skin disorders by targeting epigenetic regulators and modulating chromatin organization in KCs.


Assuntos
Diferenciação Celular/genética , Epiderme/fisiologia , Epigênese Genética , Queratinócitos/fisiologia , Fatores de Transcrição/genética , Humanos , Fatores de Transcrição/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-25085956

RESUMO

Although p53 has long been known as the "guardian of the genome" with a role in tumor suppression in many tissues, the discovery of two p53 ancestral genes, p63 and p73, more than a decade ago has triggered a considerable amount of research into the role of these genes in skin development and diseases. In this review, we primarily focus on mechanisms of action of p53 and p63, which are the best-studied p53 family members in the skin. The existence of multiple isoforms and their roles as transcriptional activators and repressors are key to their function in multiple biological processes including the control of skin morphogenesis, regeneration, tumorigenesis, and response to chemotherapy. Last, we provide directions for further research on this family of genes in skin biology and pathology.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Epiderme/fisiologia , Genes p53/fisiologia , Proteínas Nucleares/fisiologia , Dermatopatias/fisiopatologia , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/fisiologia , Proteínas Supressoras de Tumor/fisiologia , Proteínas de Ligação a DNA/genética , Epiderme/efeitos dos fármacos , Epiderme/crescimento & desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Humanos , Proteínas Nucleares/genética , Dermatopatias/genética , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/fisiopatologia , Fatores de Transcrição/genética , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Cicatrização/genética , Cicatrização/fisiologia
17.
Adv Wound Care (New Rochelle) ; 3(7): 468-475, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25032066

RESUMO

Significance: Epigenetic regulatory mechanisms are essential for epidermal homeostasis and contribute to the pathogenesis of many skin diseases, including skin cancer and psoriasis. However, while the epigenetic regulation of epidermal homeostasis is now becoming active area of research, the epigenetic mechanisms controlling the wound healing response remain relatively untouched. Recent Advances: Substantial progress achieved within the last two decades in understanding epigenetic mechanisms controlling gene expression allowed defining several levels, including covalent DNA and histone modifications, ATP-dependent and higher-order chromatin chromatin remodeling, as well as noncoding RNA- and microRNA-dependent regulation. Research pertained over the last few years suggests that epigenetic regulatory mechanisms play a pivotal role in the regulation of skin regeneration and control an execution of reparative gene expression programs in both skin epithelium and mesenchyme. Critical Issues: Epigenetic regulators appear to be inherently involved in the processes of skin repair, and are able to dynamically regulate keratinocyte proliferation, differentiation, and migration, together with influencing dermal regeneration and neoangiogenesis. This is achieved through a series of complex regulatory mechanisms that are able to both stimulate and repress gene activation to transiently alter cellular phenotype and behavior, and interact with growth factor activity. Future Directions: Understanding the molecular basis of epigenetic regulation is a priority as it represents potential therapeutic targets for the treatment of both acute and chronic skin conditions. Future research is, therefore, imperative to help distinguish epigenetic modulating drugs that can be used to improve wound healing.

18.
J Invest Dermatol ; 134(12): 2873-2882, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24999588

RESUMO

Chemotherapy has severe side effects in normal rapidly proliferating organs, such as hair follicles, and causes massive apoptosis in hair matrix keratinocytes followed by hair loss. To define the molecular signature of hair follicle response to chemotherapy, human scalp hair follicles cultured ex vivo were treated with doxorubicin (DXR), and global microarray analysis was performed 3 hours after treatment. Microarray data revealed changes in expression of 504 genes in DXR-treated hair follicles versus controls. Among these genes, upregulations of several tumor necrosis factor family of apoptotic receptors (FAS, TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) receptors 1/2), as well as of a large number of keratin-associated protein genes, were seen after DXR treatment. Hair follicle apoptosis induced by DXR was significantly inhibited by either TRAIL-neutralizing antibody or caspase-8 inhibitor, thus suggesting a previously unreported role for TRAIL receptor signaling in mediating DXR-induced hair loss. These data demonstrate that the early phase of the hair follicle response to DXR includes upregulation of apoptosis-associated markers, as well as substantial reorganization of the terminal differentiation programs in hair follicle keratinocytes. These data provide an important platform for further studies toward the design of effective approaches for the management of chemotherapy-induced hair loss.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Folículo Piloso/citologia , Alopecia/induzido quimicamente , Alopecia/metabolismo , Alopecia/patologia , Antineoplásicos/efeitos adversos , Caspase 8/efeitos dos fármacos , Caspase 8/metabolismo , Células Cultivadas , Dano ao DNA/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/efeitos dos fármacos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Transdução de Sinais/efeitos dos fármacos , Receptor fas/efeitos dos fármacos , Receptor fas/metabolismo
19.
Development ; 141(1): 101-11, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24346698

RESUMO

Chromatin structural states and their remodelling, including higher-order chromatin folding and three-dimensional (3D) genome organisation, play an important role in the control of gene expression. The role of 3D genome organisation in the control and execution of lineage-specific transcription programmes during the development and differentiation of multipotent stem cells into specialised cell types remains poorly understood. Here, we show that substantial remodelling of the higher-order chromatin structure of the epidermal differentiation complex (EDC), a keratinocyte lineage-specific gene locus on mouse chromosome 3, occurs during epidermal morphogenesis. During epidermal development, the locus relocates away from the nuclear periphery towards the nuclear interior into a compartment enriched in SC35-positive nuclear speckles. Relocation of the EDC locus occurs prior to the full activation of EDC genes involved in controlling terminal keratinocyte differentiation and is a lineage-specific, developmentally regulated event controlled by transcription factor p63, a master regulator of epidermal development. We also show that, in epidermal progenitor cells, p63 directly regulates the expression of the ATP-dependent chromatin remodeller Brg1, which binds to distinct domains within the EDC and is required for relocation of the EDC towards the nuclear interior. Furthermore, Brg1 also regulates gene expression within the EDC locus during epidermal morphogenesis. Thus, p63 and its direct target Brg1 play an essential role in remodelling the higher-order chromatin structure of the EDC and in the specific positioning of this locus within the landscape of the 3D nuclear space, as required for the efficient expression of EDC genes in epidermal progenitor cells during skin development.


Assuntos
Montagem e Desmontagem da Cromatina/genética , DNA Helicases/metabolismo , Células-Tronco Multipotentes/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular/genética , Linhagem da Célula/genética , Cromatina/metabolismo , DNA Helicases/genética , Células Epidérmicas , Epiderme/embriologia , Epiderme/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/genética , Regulação da Expressão Gênica no Desenvolvimento , Queratinócitos/citologia , Queratinócitos/metabolismo , Proteínas de Ligação à Região de Interação com a Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Nucleares/genética , Fosfoproteínas/genética , Ligação Proteica , Dobramento de Proteína , Interferência de RNA , RNA Interferente Pequeno , Ribonucleoproteínas/metabolismo , Fatores de Processamento de Serina-Arginina , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...