Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(4): 5744-5759, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36651701

RESUMO

The paper presents a study concerning the role of ferroelectric filler size and clustering in the dielectric properties of 20%BaTiO3-80%PVDF and of 20% (2%Ag-98%BaTiO3)-PVDF hybrid nanocomposites. By finite element calculations, it was shown that using fillers with ε > 103 does not provide a permittivity rise in the composites and the effective dielectric constant tends to saturate to specific values determined by the filler size and agglomeration degree. Irrespective of the ferroelectric filler sizes, the addition of metallic ultrafine nanoparticles (Ag) results in permittivity intensification and the effect is even stronger if the metallic nanoparticles are connected to a higher degree with the ferroelectric particles' surfaces. When using coarse ferroelectric fillers, the probability of clustering is higher, thus favoring the permittivity increase by field concentration in small regions close to the interfaces separating dissimilar materials. The modeling results were validated by an experimental dielectric analysis performed in a series of PVDF-based thick films with the same amount of BaTiO3 fillers or with Ag-BaTiO3 hybrid fillers. Similar trends as predicted by simulations were found experimentally but with slightly higher permittivity values which were assigned to the modifications of the polymer phase composition due to the presence of nanofillers and the local sample inhomogeneity (the presence of clustering, in particular for coarse BaTiO3 grains), which create regions with enhanced local fields.

2.
Nanomaterials (Basel) ; 12(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35335747

RESUMO

The role of Ag addition on the structural, dielectric, and mechanical harvesting response of 20%(xAg - (1 - x)BaTiO3) - 80%PVDF (x = 0, 2, 5, 7 and 27 vol.%) flexible composites is investigated. The inorganic fillers were realized by precipitating fine (~3 nm) silver nanoparticles onto BaTiO3 nanoparticles (~60 nm average size). The hybrid admixtures with a total filling factor of 20 vol.% were embedded into the PVDF matrix. The presence of filler enhances the amount of ß-PVDF polar phase and the BaTiO3 filler induces an increase of the permittivity from 11 to 18 (1 kHz) in the flexible composites. The addition of increasing amounts of Ag is further beneficial for permittivity increase; with the maximum amount (x = 27 vol.%), permittivity is three times larger than in pure PVDF (εr ~ 33 at 1 kHz) with a similar level of tangent losses. This result is due to the local field enhancement in the regions close to the filler-PVDF interfaces which are additionally intensified by the presence of silver nanoparticles. The metallic addition is also beneficial for the mechanical harvesting ability of such composites: the amplitude of the maximum piezoelectric-triboelectric combined output collected in open circuit conditions increases from 0.2 V/cm2 (PVDF) to 30 V/cm2 for x = 27 vol.% Ag in a capacitive configuration. The role of ferroelectric and metallic nanoparticles on the increasing mechanical-electric conversion response is also been explained.

3.
Materials (Basel) ; 14(15)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34361408

RESUMO

The frequency and temperature dependence of dielectric properties of CH3NH3PbI3 (MAPI) crystals have been studied and analyzed in connection with temperature-dependent structural studies. The obtained results bring arguments for the existence of ferroelectricity and aim to complete the current knowledge on the thermally activated conduction mechanisms, in dark equilibrium and in the presence of a small external a.c. electric field. The study correlates the frequency-dispersive dielectric spectra with the conduction mechanisms and their relaxation processes, as well as with the different transport regimes indicated by the Nyquist plots. The different energy barriers revealed by the impedance spectroscopy highlight the dominant transport mechanisms in different frequency and temperature ranges, being associated with the bulk of the grains, their boundaries, and/or the electrodes' interfaces.

4.
Nanotechnology ; 32(41)2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34214995

RESUMO

The discovery of multifunctional properties related to electro-activity of organic systems of biomolecules is important for a variety of applications, especially for devices in the realm of biocompatible sensors and/or bioactuators. A further step towards such applications is to prepare thin films with the required properties. Here, the investigation is focused on the characterization of films of guanine and cytosine nucleobases, prepared by thermal evaporation-an industrial accessible deposition technique. The cytosine films have an orthorhombic non-centrosymmetric structure and grow in two interconnected nanostructured fractal patterns, of nearly equal proportion. Piezoresponse force microscopy images acquired at room temperature on the cytosine films display large zones with antiparallel alignment of the vertical components of the polarization vector. Guanine films have a dense nano-grained morphology. Our studies reveal electrical polarization switching effects which can be related to ferroelectricity in the films of guanine molecules. Characteristic ferroelectric polarization-electric-field hysteresis loops showing large electrical polarization are observed at low temperatures up to 200 K. Above this temperature, the guanine films have a preponderant paraelectric phase containing residual or locally induced nano-scopic ferroelectric domains, as observed by piezoresponse force microscopy at room temperature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...