Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci Methods ; 386: 109778, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36572156

RESUMO

BACKGROUND: Intrathecal injections provide important access to the central nervous system for delivery of anesthetic, analgesic or chemotherapeutic drugs that do not otherwise cross the blood-brain barrier. The administration of drugs via this route in animal models is challenging due to an inability to visualize the small target space during injection. Successful drug delivery therefore requires expertise in indirectly assessing vertebral and spinal cord anatomy and gaining advanced procedural skills. These factors are especially compounded in small animals such as mice (the most common mammalian model) and in investigations modeling pediatric drug delivery, where the animal is even smaller. NEW METHOD: To address these issues, we have developed a method in which high-frequency ultrasound imaging is used to visualize and target the lumbar intrathecal space for injections. The technique is demonstrated in mice as young as postnatal day 16. To evaluate the method, a gadolinium-based magnetic resonance imaging (MRI) contrast agent was injected intrathecally, and subsequent brain delivery was verified post-injection by MRI. RESULTS: Successful intrathecal injections of the MRI contrast agent showed distribution to the brain. In this study, we achieved a targeting success rate of 80% in 20 animals. COMPARISON WITH EXISTING METHODS AND CONCLUSION: We expect that the new method will be convenient for drug delivery to the central nervous system in rodent research and provide higher reliability than unguided approaches, an essential contribution that will enable intrathecal delivery in pediatric mouse models.


Assuntos
Sistema Nervoso Central , Meios de Contraste , Camundongos , Animais , Reprodutibilidade dos Testes , Sistema Nervoso Central/diagnóstico por imagem , Injeções Espinhais , Ultrassonografia , Ultrassonografia de Intervenção , Mamíferos
2.
Dis Model Mech ; 14(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34514502

RESUMO

In hypoplastic left heart syndrome (HLHS), the mechanisms leading to left heart hypoplasia and their associated fetal abnormalities are largely unknown. Current animal models have limited utility in resolving these questions as they either do not fully reproduce the cardiac phenotype, do not survive to term and/or have very low disease penetrance. Here, we report the development of a surgically induced mouse model of HLHS that overcomes these limitations. Briefly, we microinjected the fetal left atrium of embryonic day (E)14.5 mice with an embolizing agent under high-frequency ultrasound guidance, which partially blocks blood flow into the left heart and induces hypoplasia. At term (E18.5), all positively embolized mice exhibit retrograde aortic arch flow, non-apex-forming left ventricles and hypoplastic ascending aortas. We thus report the development of the first mouse model of isolated HLHS with a fully penetrant cardiac phenotype and survival to term. Our method allows for the interrogation of previously intractable questions, such as determining the mechanisms of cardiac hypoplasia and fetal abnormalities observed in HLHS, as well as testing of mechanism-based therapies, which are urgently lacking.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Animais , Aorta Torácica , Feto , Ventrículos do Coração , Hemodinâmica , Síndrome do Coração Esquerdo Hipoplásico/genética , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...