Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(31): 28898-28909, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37576693

RESUMO

Matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-ToF MS) is a promising strategy for clinical diagnosis based on metabolite detection. However, several bottlenecks (such as the lack of reproducibility in analysis, the presence of an important background in low-mass range, and the lack of organic matrix for some molecules) prevent its transfer to clinical cases. These limitations can be addressed by using nanoporous silicon surfaces chemically functionalized with silane monolayers. In the present study, sepsis metabolite biomarkers were used to investigate the effects of silane monolayers and porous silicon substrates on MALDI-ToF MS analysis (signal-to-noise value (S/N), relative standard deviation of the S/N of triplicate samples (STDmean), and intra-substrates uniformity). Also, the impact of the physicochemical properties of metabolites, with different isoelectric points and hydrophobic-hydrophilic balances, was assessed. Four different silane molecules, with various alkyl chain lengths and head-group charges, were self-assembled in monolayers on plane and porous silicon surfaces. Their surface coverage and conformity were investigated by X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS). The seven metabolites detected on the stainless-steel target plate (lysophosphatidylcholine, caffeine, phenylalanine, creatinine, valine, arginine, and glycerophosphocholine) are also detected on the silanized and bare, plane and porous silicon surfaces. Moreover, two metabolites, glycine and alanine, which are not detected on the stainless-steel target plate, are detected on all silanized surfaces, except glycine which is not detected on CH3 short-modified porous silicon and on the bare plane silicon substrate. In addition, whatever the metabolites (except phenylalanine and valine), at least one of the silicon surfaces allows to increase the S/N value in comparison with the stainless-steel target plate. Also, the heterogeneity of matrix crystallization features is linked to the STDmean which is poor on the NH3+ monolayer on plane substrate and better on the NH3+ monolayer on porous substrate, for most of the metabolites. Nevertheless, matrix crystallization features are not sufficient to systematically get high STDmean and uniformity in MALDI-ToF MS analysis. Indeed, the physicochemical properties of metabolites and surfaces, limitations in metabolite extraction from the pores, and improvement in metabolite desorption due to the pores are shown to significantly impact MS analysis. In particular, in the case of the most hydrophobic metabolites studied, the highest S/N values and the best STDmean and uniformity (the lowest values) are reached by using porous substrates, while in the case of the most hydrophilic metabolites studied, plane substrates demonstrated the highest S/N and the lowest STDmean. No clear trend of surface chemistry was evidenced.

2.
ACS Appl Mater Interfaces ; 15(1): 1535-1544, 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36576942

RESUMO

The growth of crystalline Li-based oxide thin films on silicon substrates is essential for the integration of next-generation solid-state lithionic and electronic devices including on-chip microbatteries, memristors, and sensors. However, growing crystalline oxides directly on silicon typically requires high temperatures and oxygen partial pressures, which leads to the formation of undesired chemical species at the interface compromising the crystal quality of the films. In this work, we employ a 2 nm gamma-alumina (γ-Al2O3) buffer layer on Si substrates in order to grow crystalline thin films of Li4Ti5O12 (LTO), a well-known active material for lithium-ion batteries. The ultrathin γ-Al2O3 layer enables the formation of a stable heterostructure with sharp interfaces and drastically improves the LTO crystallographic and electrochemical properties. Long-term galvanostatic cycling of 50 nm LTO films in liquid-based half-cells demonstrates a high capacity retention of 91% after 5000 cycles at 100 C. Rate capability tests showcase a specific charge of 56 mA h g-1 at an exceptional C-rate of 5000 C (15 mA cm-2). Moreover, with sub-millisecond current pulse tests, the reported thin-film heterostructure exhibits rapid Li-ion (de)intercalation, which could lead to fast switching timescales in resistive memory devices and electrochemical transistors.

3.
Langmuir ; 35(29): 9554-9563, 2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31290675

RESUMO

Titanium tungsten (TiW) films (200 nm thick) were cleaned by oxygen plasma, and the resulting oxidized surfaces were functionalized by 3-aminopropylphosphonic acid (APPA), 3-ethoxydimethylsilylpropylamine (APDMES), or dopamine (DA) to form three different organolayers. The three resulting organolayers were characterized by X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, and Fourier transform infrared spectroscopy analyses. The stability of each organolayer was investigated. Our results suggested that the Si-O-Ti or Si-O-W bonds formed by the reactions of APDMES with surface-oxidized TiW were rather labile, whereas the catechol layer was less labile. The APPA layer was the most stable of all tested surface modifications.

4.
Sci Technol Adv Mater ; 18(1): 430-435, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28740558

RESUMO

High-quality thermoelectric La0.2Sr0.8TiO3 (LSTO) films, with thicknesses ranging from 20 nm to 0.7 µm, have been epitaxially grown on SrTiO3(001) substrates by enhanced solid-source oxide molecular-beam epitaxy. All films are atomically flat (with rms roughness < 0.2 nm), with low mosaicity (<0.1°), and present very low electrical resistivity (<5 × 10-4 Ω cm at room temperature), one order of magnitude lower than standard commercial Nb-doped SrTiO3 single-crystalline substrate. The conservation of transport properties within this thickness range has been confirmed by thermoelectric measurements where Seebeck coefficients of approximately -60 µV/K have been recorded for all films. These LSTO films can be integrated on Si for non-volatile memory structures or opto-microelectronic devices, functioning as transparent conductors or thermoelectric elements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...