Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Cancer Discov ; 11(1): 142-157, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32816843

RESUMO

KRAS is the most frequently mutated driver of pancreatic, colorectal, and non-small cell lung cancers. Direct KRAS blockade has proved challenging, and inhibition of a key downstream effector pathway, the RAF-MEK-ERK cascade, has shown limited success because of activation of feedback networks that keep the pathway in check. We hypothesized that inhibiting SOS1, a KRAS activator and important feedback node, represents an effective approach to treat KRAS-driven cancers. We report the discovery of a highly potent, selective, and orally bioavailable small-molecule SOS1 inhibitor, BI-3406, that binds to the catalytic domain of SOS1, thereby preventing the interaction with KRAS. BI-3406 reduces formation of GTP-loaded RAS and limits cellular proliferation of a broad range of KRAS-driven cancers. Importantly, BI-3406 attenuates feedback reactivation induced by MEK inhibitors and thereby enhances sensitivity of KRAS-dependent cancers to MEK inhibition. Combined SOS1 and MEK inhibition represents a novel and effective therapeutic concept to address KRAS-driven tumors. SIGNIFICANCE: To date, there are no effective targeted pan-KRAS therapies. In-depth characterization of BI-3406 activity and identification of MEK inhibitors as effective combination partners provide an attractive therapeutic concept for the majority of KRAS-mutant cancers, including those fueled by the most prevalent mutant KRAS oncoproteins, G12D, G12V, G12C, and G13D.See related commentary by Zhao et al., p. 17.This article is highlighted in the In This Issue feature, p. 1.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas p21(ras) , Linhagem Celular Tumoral , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno , Mutação , Nucleotídeos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética
2.
Front Mol Biosci ; 7: 598369, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33521051

RESUMO

Metabolomics has been increasingly applied to biomarker discovery, as untargeted metabolic profiling represents a powerful exploratory tool for identifying causal links between biomarkers and disease phenotypes. In the present work, we used untargeted metabolomics to investigate plasma specimens of rats, dogs, and mice treated with small-molecule drugs designed for improved glycemic control of type 2 diabetes mellitus patients via activation of GPR40. The in vivo pharmacology of GPR40 is not yet fully understood. Compounds targeting this receptor have been found to induce drug-induced liver injury (DILI). Metabolomic analysis facilitating an integrated UPLC-TWIMS-HRMS platform was used to detect metabolic differences between treated and non-treated animals within two 4-week toxicity studies in rat and dog, and one 2-week toxicity study in mouse. Multivariate statistics of untargeted metabolomics data subsequently revealed the presence of several significantly upregulated endogenous compounds in the treated animals whose plasma level is known to be affected during DILI. A specific bile acid metabolite useful as endogenous probe for drug-drug interaction studies was identified (chenodeoxycholic acid-24 glucuronide), as well as a metabolic precursor indicative of acidic bile acid biosynthesis (7α-hydroxy-3-oxo-4-cholestenoic acid). These results correlate with typical liver toxicity parameters on the individual level.

3.
Oncol Lett ; 18(4): 3914-3924, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31516602

RESUMO

Immunosuppressive myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) are associated with immunologic tolerance and poor prognosis in ovarian cancer (OvCa). We hypothesized that women with germline BRCA1 and BRCA2 mutation-associated (gBRCAm) OvCa would have fewer circulating immunosuppressive immune cells compared to those with BRCA wild-type (BRCAwt) disease during their early disease course (<5 years post-diagnosis) where gBRCAm is a favorable prognostic factor. We collected and viably froze peripheral blood mononuclear cells (PBMCs) from patients with recurrent OvCa olaparib clinical trials (NCT01445418/NCT01237067). Immune subset analyses were performed using flow cytometry for Tregs, exhausted CD8+ T cells, monocytes and MDSCs. Functional marker expression, including cytotoxic T lymphocyte-associated protein 4 (CTLA-4), T cell immunoglobulin and mucin domain 3 (TIM-3) and programmed cell death protein 1 (PD-1) was evaluated. Data were analyzed using FlowJo. Pretreatment PBMCs were collected from 41 patients (16 gBRCAm/25 BRCAwt). The percentage of MDSCs among viable CD45+ PBMC was lower in gBRCAm OvCa compared with BRCAwt OvCa (median 0.565 vs. 0.93%, P=0.0086) but this difference was not seen in those women >5 years post-diagnosis. CD8+ T cells among viable CD45+ PBMCs and CTLA-4+/CD8+ T cells were higher in gBRCAm carriers than patients with BRCAwt, in particular for those <5 years post-diagnosis (median 20.4 vs. 9.78%, P=0.031 and median MFI 0.19 vs. 0.22, P=0.0074, respectively). TIM-3 expression on Tregs was associated with poor progression-free survival, independent of gBRCAm status (P<0.001). Our pilot data suggested that patients with gBRCAm OvCa may have fewer circulating MDSCs but higher CD8+ T cells in PBMCs during their early disease course. This may contribute to the observed survival benefit for these women in their first post-diagnosis decade.

4.
Sci Rep ; 8(1): 8979, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29895957

RESUMO

Both classic and newer antimitotics commonly induce a prolonged mitotic arrest in cell culture. During arrest, cells predominantly undergo one of two fates: cell death by apoptosis, or mitotic slippage and survival. To refine this binary description, a quantitative understanding of these cell responses is needed. Herein, we propose a quantitative description of the kinetics of colon carcinoma RKO cell fates in response to different antimitotics, using data from the single cell experiments of Gascoigne and Taylor (2008). The mathematical model is calibrated using the in vitro experiments of Gascoigne and Taylor (2008). We show that the time-dependent probability of cell death or slippage is universally identical for monastrol, nocodazole and two different doses of AZ138, but significantly different for taxol. Death and slippage responses across drugs can be characterized by Gamma distributions. We demonstrate numerically that these rates increase with prolonged mitotic arrest. Our model demonstrates that RKO cells exhibit a triphasic response - first, remain in mitosis, then undergo fast and slow transition, respectively- dependent on the length of mitotic arrest and irrespective of cell fate, drug type or dose.


Assuntos
Antimitóticos/farmacologia , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Neoplasias do Colo , Mitose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Humanos
5.
Lancet Oncol ; 19(2): 207-215, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29361470

RESUMO

BACKGROUND: High-grade serous ovarian carcinoma is characterised by TP53 mutations, DNA repair defects, and genomic instability. We hypothesised that prexasertib (LY2606368), a cell cycle checkpoint kinase 1 and 2 inhibitor, would be active in BRCA wild-type disease. METHODS: In an open-label, single-centre, two-stage, proof-of-concept phase 2 study, we enrolled women aged 18 years or older with measurable, recurrent high-grade serous or high-grade endometrioid ovarian carcinoma. All patients had a negative family history of hereditary breast and ovarian cancer or known BRCA wild-type status, measurable disease according to Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1, Eastern Cooperative Oncology Group performance status score 0-2, and adequate haematological, renal, hepatic, and bone-marrow function. Patients received intravenous prexasertib 105 mg/m2 administered over 1 h every 14 days in 28-day cycles until disease progression, unacceptable toxicity, or withdrawal of consent. The primary endpoint of investigator-assessed tumour response, based on RECIST version 1.1, was assessed per protocol (assessable patients who had undergone CT imaging at baseline and attended at least one protocol-specified follow-up) and by intention to treat. The final analysis of this cohort of patients with BRCA wild-type high-grade serous ovarian carcinoma is reported here. This ongoing trial is registered with ClinicalTrials.gov, number NCT02203513, and continues to enrol patients for the BRCA-mutated ovarian cancer cohort. FINDINGS: Between Jan 20, 2015, and Nov 2, 2016, we enrolled 28 women with a median age of 64 years (IQR 58·0-69·5) who had previously received a median of 5·0 (IQR 2·5-5·0) systemic therapies. Most patients (22 [79%]) had platinum-resistant or platinum-refractory disease. All women received at least one dose of prexasertib, but four (14%) of 28 patients were not assessable for RECIST response. Eight (33%, 95% CI 16-55) of 24 patients assessable per protocol had partial responses. In the intention-to-treat population, eight (29%, 95% CI 13-49) of 28 had a partial responses. The most common (in >10% patients) grade 3 or 4 treatment-emergent adverse events were neutropenia in 26 (93%) of 28 patients, reduced white blood cell count in 23 (82%), thrombocytopenia in seven (25%), and anaemia in three (11%). Grade 4 neutropenia was reported in 22 (79%) patients after the first dose of prexasertib and was transient (median duration 6 days [IQR 4-8]) and recovered without growth-factor support in all cases. The treatment-related serious adverse event of grade 3 febrile neutropenia was reported in two (7%) patients. One patient died during the study due to tumour progression. INTERPRETATION: Prexasertib showed clinical activity and was tolerable in patients with BRCA wild-type high-grade serous ovarian carcinoma. This drug warrants further development in this setting, especially for patients with platinum-resistant or platinum-refractory disease. FUNDING: Intramural Research Program of the National Institutes of Health and National Cancer Institute.


Assuntos
Cistadenocarcinoma Seroso/tratamento farmacológico , Cistadenocarcinoma Seroso/genética , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Pirazinas/uso terapêutico , Pirazóis/uso terapêutico , Adulto , Idoso , Proteína BRCA1/efeitos dos fármacos , Proteína BRCA1/genética , Proteína BRCA2/efeitos dos fármacos , Proteína BRCA2/genética , Quinase 1 do Ponto de Checagem/antagonistas & inibidores , Cistadenocarcinoma Seroso/mortalidade , Cistadenocarcinoma Seroso/patologia , Intervalo Livre de Doença , Feminino , Humanos , Pessoa de Meia-Idade , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Recidiva Local de Neoplasia/patologia , Estadiamento de Neoplasias , Neoplasias Ovarianas/mortalidade , Neoplasias Ovarianas/patologia , Prognóstico , Medição de Risco , Análise de Sobrevida , Fatores de Tempo , Resultado do Tratamento , Estados Unidos , Adulto Jovem
6.
Front Oncol ; 7: 189, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28913178

RESUMO

Investigating the role of intrinsic cell heterogeneity emerging from variations in cell-cycle parameters and apoptosis is a crucial step toward better informing drug administration. Antimitotic agents, widely used in chemotherapy, target exclusively proliferative cells and commonly induce a prolonged mitotic arrest followed by cell death via apoptosis. In this paper, we developed a physiologically motivated mathematical framework for describing cancer cell growth dynamics that incorporates the intrinsic heterogeneity in the time individual cells spend in the cell-cycle and apoptosis process. More precisely, our model comprises two age-structured partial differential equations for the proliferative and apoptotic cell compartments and one ordinary differential equation for the quiescent compartment. To reflect the intrinsic cell heterogeneity that governs the growth dynamics, proliferative and apoptotic cells are structured in "age," i.e., the amount of time remaining to be spent in each respective compartment. In our model, we considered an antimitotic drug whose effect on the cellular dynamics is to induce mitotic arrest, extending the average cell-cycle length. The prolonged mitotic arrest induced by the drug can trigger apoptosis if the time a cell will spend in the cell cycle is greater than the mitotic arrest threshold. We studied the drug's effect on the long-term cancer cell growth dynamics using different durations of prolonged mitotic arrest induced by the drug. Our numerical simulations suggest that at confluence and in the absence of the drug, quiescence is the long-term asymptotic behavior emerging from the cancer cell growth dynamics. This pattern is maintained in the presence of small increases in the average cell-cycle length. However, intermediate increases in cell-cycle length markedly decrease the total number of cells and can drive the cancer population to extinction. Intriguingly, a large "switch-on/switch-off" increase in the average cell-cycle length maintains an active cell population in the long term, with oscillating numbers of proliferative cells and a relatively constant quiescent cell number.

7.
J Clin Oncol ; 35(19): 2193-2202, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28471727

RESUMO

Purpose Data suggest that DNA damage by poly (ADP-ribose) polymerase inhibition and/or reduced vascular endothelial growth factor signaling by vascular endothelial growth factor receptor inhibition may complement antitumor activity of immune checkpoint blockade. We hypothesize the programmed death-ligand 1 (PD-L1) inhibitor, durvalumab, olaparib, or cediranib combinations are tolerable and active in recurrent women's cancers. Patients and Methods This phase I study tested durvalumab doublets in parallel 3 + 3 dose escalations. Durvalumab was administered at 10 mg/kg every 2 weeks or 1,500 mg every 4 weeks with either olaparib tablets twice daily or cediranib on two schedules. The primary end point was the recommended phase II dose (RP2D). Response rate and pharmacokinetic analysis were secondary end points. Results Between June 2015 and May 2016, 26 women were enrolled. The RP2D was durvalumab 1,500 mg every 4 weeks with olaparib 300 mg twice a day, or cediranib 20 mg, 5 days on/2 days off. No dose-limiting toxicity was recorded with durvalumab plus olaparib. The cediranib intermittent schedule (n = 6) was examined because of recurrent grade 2 and non-dose-limiting toxicity grade 3 and 4 adverse events (AEs) on the daily schedule (n = 8). Treatment-emergent AEs included hypertension (two of eight), diarrhea (two of eight), pulmonary embolism (two of eight), pulmonary hypertension (one of eight), and lymphopenia (one of eight). Durvalumab plus intermittent cediranib grade 3 and 4 AEs were hypertension (one of six) and fatigue (one of six). Exposure to durvalumab increased cediranib area under the curve and maximum plasma concentration on the daily, but not intermittent, schedules. Two partial responses (≥15 months and ≥ 11 months) and eight stable diseases ≥ 4 months (median, 8 months [4 to 14.5 months]) were seen in patients who received durvalumab plus olaparib, yielding an 83% disease control rate. Six partial responses (≥ 5 to ≥ 8 months) and three stable diseases ≥ 4 months (4 to ≥ 8 months) were seen in 12 evaluable patients who received durvalumab plus cediranib, for a 50% response rate and a 75% disease control rate. Response to therapy was independent of PD-L1 expression. Conclusion To our knowledge, this is the first reported anti-PD-L1 plus olaparib or cediranib combination therapy. The RP2Ds of durvalumab plus olaparib and durvalumab plus intermittent cediranib are tolerable and active. Phase II studies with biomarker evaluation are ongoing.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias dos Genitais Femininos/tratamento farmacológico , Adulto , Idoso , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/farmacocinética , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/farmacocinética , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/biossíntese , Antígeno B7-H1/imunologia , Relação Dose-Resposta a Droga , Feminino , Neoplasias dos Genitais Femininos/imunologia , Neoplasias dos Genitais Femininos/metabolismo , Neoplasias dos Genitais Femininos/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Pessoa de Meia-Idade , Ftalazinas/administração & dosagem , Ftalazinas/efeitos adversos , Ftalazinas/farmacocinética , Piperazinas/administração & dosagem , Piperazinas/efeitos adversos , Piperazinas/farmacocinética , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/efeitos adversos , Quinazolinas/administração & dosagem , Quinazolinas/efeitos adversos , Quinazolinas/farmacocinética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores
8.
PLoS One ; 11(6): e0156661, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27257824

RESUMO

High-grade serous ovarian cancer (HGSOC) represents the majority of ovarian cancers and accounts for the largest proportion of deaths from the disease. A timely detection of low volume HGSOC should be the goal of any screening studies. However, numerous transvaginal ultrasound (TVU) detection-based population studies aimed at detecting low-volume disease have not yielded reduced mortality rates. A quantitative invalidation of TVU as an effective HGSOC screening strategy is a necessary next step. Herein, we propose a mathematical model for a quantitative explanation on the reported failure of TVU-based screening to improve HGSOC low-volume detectability and overall survival.We develop a novel in silico mathematical assessment of the efficacy of a unimodal TVU monitoring regimen as a strategy aimed at detecting low-volume HGSOC in cancer-positive cases, defined as cases for which the inception of the first malignant cell has already occurred. Our findings show that the median window of opportunity interval length for TVU monitoring and HGSOC detection is approximately 1.76 years. This does not translate into reduced mortality levels or improved detection accuracy in an in silico cohort across multiple TVU monitoring frequencies or detection sensitivities. We demonstrate that even a semiannual, unimodal TVU monitoring protocol is expected to miss detectable HGSOC. Lastly, we find that circa 50% of the simulated HGSOC growth curves never reach the baseline detectability threshold, and that on average, 5-7 infrequent, rate-limiting stochastic changes in the growth parameters are associated with reaching HGSOC detectability and mortality thresholds respectively. Focusing on a malignancy poorly studied in the mathematical oncology community, our model captures the dynamic, temporal evolution of HGSOC progression. Our mathematical model is consistent with recent case reports and prospective TVU screening population studies, and provides support to the empirical recommendation against frequent HGSOC screening.


Assuntos
Detecção Precoce de Câncer , Neoplasias Ovarianas/diagnóstico por imagem , Neoplasias Ovarianas/patologia , Adulto , Idoso , Estudos de Coortes , Progressão da Doença , Feminino , Humanos , Cinética , Pessoa de Meia-Idade , Modelos Teóricos , Reprodutibilidade dos Testes , Processos Estocásticos , Ultrassonografia
9.
Wiley Interdiscip Rev Syst Biol Med ; 8(4): 337-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27259061

RESUMO

Women constitute the majority of the aging United States (US) population, and this has substantial implications on cancer population patterns and management practices. Breast cancer is the most common women's malignancy, while ovarian cancer is the most fatal gynecological malignancy in the US. In this review, we focus on these subsets of women's cancers, seen more commonly in postmenopausal and elderly women. In order to systematically investigate the complexity of cancer progression and response to treatment in breast and ovarian malignancies, we assert that integrated mathematical modeling frameworks viewed from a systems biology perspective are needed. Such integrated frameworks could offer innovative contributions to the clinical women's cancers community, as answers to clinical questions cannot always be reached with contemporary clinical and experimental tools. Here, we recapitulate clinically known data regarding the progression and treatment of the breast and ovarian cancers. We compare and contrast the two malignancies whenever possible in order to emphasize areas where substantial contributions could be made by clinically inspired and validated mathematical modeling. We show how current paradigms in the mathematical oncology community focusing on the two malignancies do not make comprehensive use of, nor substantially reflect existing clinical data, and we highlight the modeling areas in most critical need of clinical data integration. We emphasize that the primary goal of any mathematical study of women's cancers should be to address clinically relevant questions. WIREs Syst Biol Med 2016, 8:337-362. doi: 10.1002/wsbm.1343 For further resources related to this article, please visit the WIREs website.


Assuntos
Neoplasias da Mama/diagnóstico , Modelos Teóricos , Neoplasias Ovarianas/diagnóstico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/terapia , Resistencia a Medicamentos Antineoplásicos , Detecção Precoce de Câncer , Feminino , Humanos , Terapia de Alvo Molecular , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/terapia , Recidiva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...