Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncogenesis ; 12(1): 6, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36755015

RESUMO

Impairments in protein folding in the endoplasmic reticulum (ER) lead to a condition called ER stress, which can trigger apoptosis via the mitochondrial or the death receptor (extrinsic) pathway. There is controversy concerning involvement of the death receptor (DR)4 and DR5-Caspase-8 -Bid pathway in ER stress-mediated cell death, and this axis has not been fully studied in B-cell malignancies. Using three B-cell lines from Mantle Cell Lymphoma, Waldenström's macroglobulinemia and Multiple Myeloma origins, we engineered a set of CRISPR KOs of key components of these cell death pathways to address this controversy. We demonstrate that DR4 and/or DR5 are essential for killing via TRAIL, however, they were dispensable for ER-stress induced-cell death, by Thapsigargin, Brefeldin A or Bortezomib, as were Caspase-8 and Bid. In contrast, the deficiency of Bax and Bak fully protected from ER stressors. Caspase-8 and Bid were cleaved upon ER-stress stimulation, but this was DR4/5 independent and rather a result of mitochondrial-induced feedback loop subsequent to Bax/Bak activation. Finally, combined activation of the ER-stress and TRAIL cell-death pathways was synergistic with putative clinical relevance for B-cell malignancies.

2.
Mol Oncol ; 17(6): 1112-1128, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36550750

RESUMO

Preventing or overcoming resistance to the Bcl-2 inhibitor venetoclax is an emerging unmet clinical need in patients with chronic lymphocytic leukaemia (CLL). The upregulation of anti-apoptotic Bcl-2 members through signalling pathways within the tumor microenvironment appears as a major factor leading to resistance to venetoclax. Previously, we reported that T cells can drive resistance through CD40 and non-canonical NF-κB activation and subsequent Bcl-XL induction. Moreover, the T cell-derived cytokines IL-21 and IL-4 differentially affect Bcl-XL expression and sensitivity to venetoclax via unknown mechanisms. Here, we mechanistically dissected how Bcl-XL is regulated in the context of JAK-STAT signalling in primary CLL. First, we demonstrated a clear antagonistic role of IL-21/STAT3 signalling in the NF-κB-mediated expression of Bcl-XL, whereas IL-4/STAT6 further promoted the expression of Bcl-XL. In comparison, Bfl-1, another NF-κB target, was not differentially affected by either cytokine. Second, STAT3 and STAT6 affected Bcl-XL transcription by binding to its promoter without disrupting the DNA-binding activity of NF-κB. Third, in situ proximity ligation assays (isPLAs) indicated crosstalk between JAK-STAT signalling and NF-κB, in which STAT3 inhibited canonical NF-κB by accelerating nuclear export, and STAT6 promoted non-canonical NF-κB. Finally, NF-κB inducing kinase (NIK) inhibition interrupted the NF-κB/STAT crosstalk and resensitized CLL cells to venetoclax. In conclusion, we uncovered distinct crosstalk mechanisms that shape the NF-κB response in CLL towards venetoclax sensitivity or resistance via Bcl-XL, thereby revealing new potential therapeutic targets.


Assuntos
Leucemia Linfocítica Crônica de Células B , NF-kappa B , Humanos , Apoptose , Resistencia a Medicamentos Antineoplásicos , Interleucina-4/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Leucemia Linfocítica Crônica de Células B/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Microambiente Tumoral
3.
Cell Death Dis ; 13(12): 1046, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36522309

RESUMO

Interleukin-8 (IL-8/CXCL8) is a pro-angiogenic and pro-inflammatory chemokine that plays a role in cancer development. Non-small cell lung carcinoma (NSCLC) produces high amounts of IL-8, which is associated with poor prognosis and resistance to chemo-radio and immunotherapy. However, the signaling pathways that lead to IL-8 production in NSCLC are unresolved. Here, we show that expression and release of IL-8 are regulated autonomously by TRAIL death receptors in several squamous and adenocarcinoma NSCLC cell lines. NSCLC constitutively secrete IL-8, which could be further enhanced by glucose withdrawal or by treatment with TRAIL or TNFα. In A549 cells, constitutive and inducible IL-8 production was dependent on NF-κB and MEK/ERK MAP Kinases. DR4 and DR5, known regulators of these signaling pathways, participated in constitutive and glucose deprivation-induced IL-8 secretion. These receptors were mainly located intracellularly. While DR4 signaled through the NF-κB pathway, DR4 and DR5 both regulated the ERK-MAPK and Akt pathways. FADD, caspase-8, RIPK1, and TRADD also regulated IL-8. Analysis of mRNA expression data from patients indicated that IL-8 transcripts correlated with TRAIL, DR4, and DR5 expression levels. Furthermore, TRAIL receptor expression levels also correlated with markers of angiogenesis and neutrophil infiltration in lung squamous carcinoma and adenocarcinoma. Collectively, these data suggest that TRAIL receptor signaling contributes to a pro-tumorigenic inflammatory signature associated with NSCLC.


Assuntos
Adenocarcinoma , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/genética , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Interleucina-8/genética , Interleucina-8/metabolismo , NF-kappa B/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/patologia , Glucose , Apoptose
4.
Nat Metab ; 2(10): 1046-1061, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32958937

RESUMO

Following activation, conventional T (Tconv) cells undergo an mTOR-driven glycolytic switch. Regulatory T (Treg) cells reportedly repress the mTOR pathway and avoid glycolysis. However, here we demonstrate that human thymus-derived Treg (tTreg) cells can become glycolytic in response to tumour necrosis factor receptor 2 (TNFR2) costimulation. This costimulus increases proliferation and induces a glycolytic switch in CD3-activated tTreg cells, but not in Tconv cells. Glycolysis in CD3-TNFR2-activated tTreg cells is driven by PI3-kinase-mTOR signalling and supports tTreg cell identity and suppressive function. In contrast to glycolytic Tconv cells, glycolytic tTreg cells do not show net lactate secretion and shuttle glucose-derived carbon into the tricarboxylic acid cycle. Ex vivo characterization of blood-derived TNFR2hiCD4+CD25hiCD127lo effector T cells, which were FOXP3+IKZF2+, revealed an increase in glucose consumption and intracellular lactate levels, thus identifying them as glycolytic tTreg cells. Our study links TNFR2 costimulation in human tTreg cells to metabolic remodelling, providing an additional avenue for drug targeting.


Assuntos
Glicólise/efeitos dos fármacos , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Linfócitos T Reguladores/metabolismo , Complexo CD3/metabolismo , Ciclo do Ácido Cítrico/efeitos dos fármacos , Glucose/metabolismo , Glucose/farmacologia , Humanos , Ácido Láctico/sangue , Ácido Láctico/metabolismo , Metaboloma , Fosfatidilinositol 3-Quinases/metabolismo , RNA/química , Receptores Tipo II do Fator de Necrose Tumoral/efeitos dos fármacos , Análise de Sequência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...