Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(15): eadj7398, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38598635

RESUMO

Urban surface and near-surface air temperatures are known to be often higher than their rural counterparts, a phenomenon now labeled as the urban heat island effect. However, whether the elevated urban temperatures are more persistent than rural temperatures at timescales commensurate to heat waves has not been addressed despite its importance for human health. Combining numerical simulations by a global climate model with a surface energy balance theory, it is demonstrated here that urban surface and near-surface air temperatures are significantly more persistent than their rural counterparts in cities dominated by impervious materials with large thermal inertia. Further use of these materials will result in even stronger urban temperature persistence, especially for tropical cities. The present findings help pinpoint mitigation strategies that can simultaneously ameliorate the larger magnitude and stronger persistence of urban temperatures.

2.
Environ Sci Technol ; 58(14): 6313-6325, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38529628

RESUMO

Urban air quality persists as a global concern, with critical health implications. This study employs a combination of machine learning (gradient boosting regression, GBR) and spatial analysis to better understand the key drivers behind air pollution and its prediction and mitigation strategies. Focusing on New York City as a representative urban area, we investigate the interplay between urban characteristics and weather factors, showing that urban features, including traffic-related parameters and urban morphology, emerge as crucial predictors for pollutants closely associated with vehicular emissions, such as elemental carbon (EC) and nitrogen oxides (NOx). Conversely, pollutants with secondary formation pathways (e.g., PM2.5) or stemming from nontraffic sources (e.g., sulfur dioxide, SO2) are predominantly influenced by meteorological conditions, particularly wind speed and maximum daily temperature. Urban characteristics are shown to act over spatial scales of 500 × 500 m2, which is thus the footprint needed to effectively capture the impact of urban form, fabric, and function. Our spatial predictive model, needing only meteorological and urban inputs, achieves promising results with mean absolute errors ranging from 8 to 32% when using full-year data. Our approach also yields good performance when applied to the temporal mapping of spatial pollutant variability. Our findings highlight the interacting roles of urban characteristics and weather conditions and can inform urban planning, design, and policy.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental/métodos , Poluição do Ar/análise , Tempo (Meteorologia) , Aprendizado de Máquina
3.
Nat Commun ; 14(1): 7438, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978178

RESUMO

As the climate warms, increasing heat-related health risks are expected, and can be exacerbated by the urban heat island (UHI) effect. UHIs can also offer protection against cold weather, but a clear quantification of their impacts on human health across diverse cities and seasons is still being explored. Here we provide a 500 m resolution assessment of mortality risks associated with UHIs for 85 European cities in 2015-2017. Acute impacts are found during heat extremes, with a 45% median increase in mortality risk associated with UHI, compared to a 7% decrease during cold extremes. However, protracted cold seasons result in greater integrated protective effects. On average, UHI-induced heat-/cold-related mortality is associated with economic impacts of €192/€ - 314 per adult urban inhabitant per year in Europe, comparable to air pollution and transit costs. These findings urge strategies aimed at designing healthier cities to consider the seasonality of UHI impacts, and to account for social costs, their controlling factors, and intra-urban variability.


Assuntos
Clima , Temperatura Alta , Humanos , Cidades , Temperatura , Estações do Ano
4.
Transp Res D Transp Environ ; 115: 103580, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36573137

RESUMO

While the decrease in air pollutant concentration during the COVID-19 lockdown is well documented, neighborhood-scale and multi-city data have not yet been explored systematically to derive a generalizable quantitative link to the drop in vehicular traffic. To bridge this gap, high spatial resolution air quality and georeferenced traffic datasets were compiled for the city of London during three weeks with significant differences in traffic. The London analysis was then augmented with a meta-analysis of lower-resolution studies from 12 other cities. The results confirm that the improvement in air quality can be partially attributed to the drop of traffic density, and more importantly quantifies the elasticity (0.71 for NO2 & 0.56 for PM2.5) of their linkages. The findings can also inform on the future impacts of the ongoing shift to electric vehicles and micro-mobility on urban air quality.

5.
Sci Total Environ ; 859(Pt 1): 160187, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395828

RESUMO

The resilience of communities has emerged as a major goal in policy and practice. Cities, states, and counties within the United States and around the world are passing laws requiring the incorporation of climate-related hazard vulnerability assessments within their master plan updates for resilience planning and design. The resilience of communities under present and future scenarios is thus becoming a cornerstone of decision making and actions. Decisions that would enhance resilience, however, span multiple sectors and involve various stakeholders. Quantifying community resilience is a key step in order to describe the preparedness level of communities, and subsequently locating non-resilient areas to further enhance their capacity to endure disasters. Two main approaches are currently being pursued to evaluate resilience. The first approach is the "community resilience" developed mainly by social scientists and planners, and it captures social resilience using numerous pre-disaster attributes to describe the functioning of a community. This approach subsumes that pre-disaster attributes can predict the community resilience to a disaster. The second approach is adopted for infrastructure resilience, mostly used by engineers, and it focuses on robustness, redundancy, resourcefulness, and rapidity. This approach is appropriate for systems that are operated by highly skilled personnel and where the actions are of engineering type. In this paper, we provide an overview of the two approaches, and we leverage their limitations to propose a hybrid approach that combines community and infrastructure capitals into an Area Resilience metric, called ARez. ARez captures the role/impact of both infrastructure and community and combines five sectors: energy, public health, natural ecosystem, socio-economic, and transportation. We present a proof-of-concept for the ARez metric, showing its practicality and applicability as a direct measure for resilience, over various time scales.


Assuntos
Planejamento em Desastres , Desastres , Estados Unidos , Ecossistema , Saúde Pública , Cidades , Meios de Transporte
6.
Irrig Sci ; 40(4-5): 593-608, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172254

RESUMO

Improved accuracy of evapotranspiration (ET) estimation, including its partitioning between transpiration (T) and surface evaporation (E), is key to monitor agricultural water use in vineyards, especially to enhance water use efficiency in semi-arid regions such as California, USA. Remote-sensing methods have shown great utility in retrieving ET from surface energy balance models based on thermal infrared data. Notably, the two-source energy balance (TSEB) has been widely and robustly applied in numerous landscapes, including vineyards. However, vineyards add an additional complexity where the landscape is essentially made up of two distinct zones: the grapevine and the interrow, which is often seasonally covered by an herbaceous cover crop. Therefore, it becomes more complex to disentangle the various contributions of the different vegetation elements to total ET, especially through TSEB, which assumes a single vegetation source over a soil layer. As such, a remote-sensing-based three-source energy balance (3SEB) model, which essentially adds a vegetation source to TSEB, was applied in an experimental vineyard located in California's Central Valley to investigate whether it improves the depiction of the grapevine-interrow system. The model was applied in four different blocks in 2019 and 2020, where each block had an eddy-covariance (EC) tower collecting continuous flux, radiometric, and meteorological measurements. 3SEB's latent and sensible heat flux retrievals were accurate with an overall RMSD ~ 50 W/m2 compared to EC measurements. 3SEB improved upon TSEB simulations, with the largest differences being concentrated in the spring season, when there is greater mixing between grapevine foliage and the cover crop. Additionally, 3SEB's modeled ET partitioning (T/ET) compared well against an EC T/ET retrieval method, being only slightly underestimated. Overall, these promising results indicate 3SEB can be of great utility to vineyard irrigation management, especially to improve T/ET estimations and to quantify the contribution of the cover crop to ET. Improved knowledge of T/ET can enhance grapevine water stress detection to support irrigation and water resource management. Supplementary Information: The online version contains supplementary material available at 10.1007/s00271-022-00787-x.

7.
Proc Natl Acad Sci U S A ; 118(21)2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33958443

RESUMO

The tempo-spatial patterns of Covid-19 infections are a result of nested personal, societal, and political decisions that involve complicated epidemiological dynamics across overlapping spatial scales. High infection "hotspots" interspersed within regions where infections remained sporadic were ubiquitous early in the outbreak, but the spatial signature of the infection evolved to affect most regions equally, albeit with distinct temporal patterns. The sparseness of Covid-19 infections in the United States was analyzed at scales spanning from 10 to 2,600 km (county to continental scale). Spatial evolution of Covid-19 cases in the United States followed multifractal scaling. A rapid increase in the spatial correlation was identified early in the outbreak (March to April). Then, the increase continued at a slower rate and approached the spatial correlation of human population. Instead of adopting agent-based models that require tracking of individuals, a kernel-modulated approach is developed to characterize the dynamic spreading of disease in a multifractal distributed susceptible population. Multiphase Covid-19 epidemics were reasonably reproduced by the proposed kernel-modulated susceptible-infectious-recovered (SIR) model. The work explained the fact that while the reproduction number was reduced due to nonpharmaceutical interventions (e.g., masks, social distancing, etc.), subsequent multiple epidemic waves still occurred; this was due to an increase in susceptible population flow following a relaxation of travel restrictions and corollary stay-at-home orders. This study provides an original interpretation of Covid-19 spread together with a pragmatic approach that can be imminently used to capture the spatial intermittency at all epidemiologically relevant scales while preserving the "disordered" spatial pattern of infectious cases.


Assuntos
COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/metabolismo , Humanos , Máscaras/tendências , Modelos Teóricos , Pandemias , Distanciamento Físico , SARS-CoV-2/isolamento & purificação , Estados Unidos/epidemiologia
8.
Chem Eng J ; 420: 127702, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33204214

RESUMO

The spatial template over which COVID-19 infections operate is a result of nested societal decisions involving complex political and epidemiological processes at a broad range of spatial scales. It is characterized by 'hotspots' of high infections interspersed within regions where infections are sporadic to absent. In this work, the sparseness of COVID-19 infections and their time variations were analyzed across the US at scales ranging from 10 km (county scale) to 2600 km (continental scale). It was found that COVID-19 cases are multi-scaling with a multifractality kernel that monotonically approached that of the underlying population. The spatial correlation of infections between counties increased rapidly in March 2020; that rise continued but at a slower pace subsequently, trending towards the spatial correlation of the population agglomeration. This shows that the disease had already spread across the USA in early March such that travel restriction thereafter (starting on March 15th 2020) had minor impact on the subsequent spatial propagation of COVID-19. The ramifications of targeted interventions on spatial patterns of new infections were explored using the epidemiological susceptible-infectious-recovered (SIR) model mapped onto the population agglomeration template. These revealed that re-opening rural areas would have a smaller impact on the spread and evolution of the disease than re-opening urban (dense) centers which would disturb the system for months. This study provided a novel way for interpreting the spatial spread of COVID-19, along with a practical approach (multifractals/SIR/spectral slope) that could be employed to capture the variability and intermittency at all scales while maintaining the spatial structure.

9.
Proc Natl Acad Sci U S A ; 117(13): 7082-7089, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32184330

RESUMO

Temporal dynamics of urban warming have been extensively studied at the diurnal scale, but the impact of background climate on the observed seasonality of surface urban heat islands (SUHIs) remains largely unexplored. On seasonal time scales, the intensity of urban-rural surface temperature differences ([Formula: see text]) exhibits distinctive hysteretic cycles whose shape and looping direction vary across climatic zones. These observations highlight possible delays underlying the dynamics of the coupled urban-biosphere system. However, a general argument explaining the observed hysteretic patterns remains elusive. A coarse-grained model of SUHI coupled with a stochastic soil water balance is developed to demonstrate that the time lags between radiation forcing, air temperature, and rainfall generate a rate-dependent hysteresis, explaining the observed seasonal variations of [Formula: see text] If solar radiation is in phase with water availability, summer conditions cause strong SUHI intensities due to high rural evaporative cooling. Conversely, cities in seasonally dry regions where evapotranspiration is out of phase with radiation show a summertime oasis effect controlled by background climate and vegetation properties. These seasonal patterns of warming and cooling have significant implications for heat mitigation strategies as urban green spaces can reduce [Formula: see text] during summertime, while potentially negative effects of albedo management during winter are mitigated by the seasonality of solar radiation.

10.
Nature ; 573(7772): 55-60, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31485056

RESUMO

Urban heat islands (UHIs) exacerbate the risk of heat-related mortality associated with global climate change. The intensity of UHIs varies with population size and mean annual precipitation, but a unifying explanation for this variation is lacking, and there are no geographically targeted guidelines for heat mitigation. Here we analyse summertime differences between urban and rural surface temperatures (ΔTs) worldwide and find a nonlinear increase in ΔTs with precipitation that is controlled by water or energy limitations on evapotranspiration and that modulates the scaling of ΔTs with city size. We introduce a coarse-grained model that links population, background climate, and UHI intensity, and show that urban-rural differences in evapotranspiration and convection efficiency are the main determinants of warming. The direct implication of these nonlinearities is that mitigation strategies aimed at increasing green cover and albedo are more efficient in dry regions, whereas the challenge of cooling tropical cities will require innovative solutions.


Assuntos
Clima , Aquecimento Global/estatística & dados numéricos , Temperatura Alta , População Urbana/estatística & dados numéricos , Cidades/estatística & dados numéricos , Planejamento de Cidades , Convecção , Clima Desértico , Europa (Continente) , Ásia Oriental , Mapeamento Geográfico , Humanos , Internacionalidade , Transpiração Vegetal , Chuva , População Rural/estatística & dados numéricos , Estações do Ano , Clima Tropical , Volatilização
11.
Environ Sci Technol ; 53(9): 4747-4754, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30855946

RESUMO

A large-scale study of methane emissions from well pads was conducted in the Marcellus shale (Pennsylvania), the largest producing natural gas shale play in the United States, to better identify the prevalence and characteristics of superemitters. Roughly 2100 measurements were taken from 673 unique unconventional well pads corresponding to ∼18% of the total population of active sites and ∼32% of the total statewide unconventional natural gas production. A log-normal distribution with a geometric mean of 2.0 kg h-1 and arithmetic mean of 5.5 kg h-1 was observed, which agrees with other independent observations in this region. The geometric standard deviation (4.4 kg h-1) compared well to other studies in the region, but the top 10% of emitters observed in this study contributed 77% of the total emissions, indicating an extremely skewed distribution. The integrated proportional loss of this representative sample was equal to 0.53% with a 95% confidence interval of 0.45-0.64% of the total production of the sites, which is greater than the U.S. Environmental Protection Agency inventory estimate (0.29%), but in the lower range of other mobile observations (0.09-3.3%). These results emphasize the need for a sufficiently large sample size when characterizing emissions distributions that contain superemitters.


Assuntos
Poluentes Atmosféricos , Gás Natural , Metano , Campos de Petróleo e Gás , Pennsylvania , Estados Unidos
12.
Artigo em Inglês | MEDLINE | ID: mdl-26465558

RESUMO

The compensated three-dimensional turbulent kinetic energy spectrum exhibits a peculiar bump at wave numbers in the vicinity of the crossover from inertial to viscous regimes due to pile up in turbulent kinetic energy, a phenomenon referred to as the bottleneck effect. The origin of this bump is linked to an inflection point in the second-order structure function in physical space caused by competition between vortex stretching and viscous diffusion mechanisms. The bump location and magnitude are reasonably predicted from a novel analytical solution to the Von Kármán-Howarth equation reflecting the competition between these two mechanisms and accounting for variable structure skewness with decreasing scale.

14.
Artigo em Inglês | MEDLINE | ID: mdl-25353571

RESUMO

In stably stratified turbulent flows, the mixing efficiency associated with eddy diffusivity for heat, or equivalently the turbulent Prandtl number (Pr(t)), is fraught with complex dynamics originating from the scalewise interplay between shear generation of turbulence and its dissipation by density gradients. A large corpus of data and numerical simulations agree on a near-universal relation between Pr(t) and the Richardson number (R(i)), which encodes the relative importance of buoyancy dissipation to mechanical production of turbulent kinetic energy. The Pr(t)-R(i) relation is shown to be derivable solely from the cospectral budgets for momentum and heat fluxes if a Rotta-like return to isotropy closure for the pressure-strain effects and Kolmogorov's theory for turbulent cascade are invoked. The ratio of the Kolmogorov to the Kolmogorov-Obukhov-Corrsin phenomenological constants, and a constant associated with isotropization of the production whose value (= 3/5) has been predicted from Rapid Distortion Theory, explain all the macroscopic nonlinearities.


Assuntos
Movimentos do Ar , Atmosfera/análise , Modelos Estatísticos , Dinâmica não Linear , Oscilometria/métodos , Reologia/métodos , Simulação por Computador
15.
Artigo em Inglês | MEDLINE | ID: mdl-23496607

RESUMO

Using only dimensional considerations, Monin and Obukhov proposed a "universal" stability correction function φ(c)(ζ) that accounts for distortions caused by thermal stratification to the mean scalar concentration profile in the atmospheric surface layer when the flow is stationary, planar homogeneous, fully turbulent, and lacking any subsidence. For nearly 6 decades, their analysis provided the basic framework for almost all operational models and data interpretation in the lower atmosphere. However, the canonical shape of φ(c)(ζ) and the departure from the Reynold's analogy continue to defy theoretical explanation. Here, the basic processes governing the scalar-velocity cospectrum, including buoyancy and the scaling laws describing the velocity and temperature spectra, are considered via a simplified cospectral budget. The solution to this cospectral budget is then used to derive φ(c)(ζ), thereby establishing a link between the energetics of turbulent velocity and scalar concentration fluctuations and the bulk flow describing the mean scalar concentration profile. The resulting theory explains all the canonical features of φ(c)(ζ), including the onset of power laws for various stability regimes and their concomitant exponents, as well as the causes of departure from Reynold's analogy.


Assuntos
Atmosfera/química , Modelos Teóricos , Reologia/métodos , Simulação por Computador , Resistência ao Cisalhamento , Propriedades de Superfície , Temperatura
16.
PLoS One ; 7(10): e47018, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071700

RESUMO

The idea that low surface densities of hairs could be a heat loss mechanism is understood in engineering and has been postulated in some thermal studies of animals. However, its biological implications, both for thermoregulation as well as for the evolution of epidermal structures, have not yet been noted. Since early epidermal structures are poorly preserved in the fossil record, we study modern elephants to infer not only the heat transfer effect of present-day sparse hair, but also its potential evolutionary origins. Here we use a combination of theoretical and empirical approaches, and a range of hair densities determined from photographs, to test whether sparse hairs increase convective heat loss from elephant skin, thus serving an intentional evolutionary purpose. Our conclusion is that elephants are covered with hair that significantly enhances their thermoregulation ability by over 5% under all scenarios considered, and by up to 23% at low wind speeds where their thermoregulation needs are greatest. The broader biological significance of this finding suggests that maintaining a low-density hair cover can be evolutionary purposeful and beneficial, which is consistent with the fact that elephants have the greatest need for heat loss of any modern terrestrial animal because of their high body-volume to skin-surface ratio. Elephant hair is the first documented example in nature where increasing heat transfer due to a low hair density covering may be a desirable effect, and therefore raises the possibility of such a covering for similarly sized animals in the past. This elephant example dispels the widely-held assumption that in modern endotherms body hair functions exclusively as an insulator and could therefore be a first step to resolving the prior paradox of why hair was able to evolve in a world much warmer than our own.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Elefantes/fisiologia , Cabelo/fisiologia , Animais , Modelos Biológicos , Vento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...