Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomed Res ; 34(3): 149-150, 2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32561694

RESUMO

This special issue of The Journal of Biomedical Research features novel studies on epileptic seizure detection and prediction based on advanced EEG signal processing and machine learning algorithms. The articles selected present important findings including new experimental results and theoretical studies.

2.
J Biomed Res ; 34(3): 151-161, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32561695

RESUMO

The visual analysis of common neurological disorders such as epileptic seizures in electroencephalography (EEG) is an oversensitive operation and prone to errors, which has motivated the researchers to develop effective automated seizure detection methods. This paper proposes a robust automatic seizure detection method that can establish a veritable diagnosis of these diseases. The proposed method consists of three steps: (i) remove artifact from EEG data using Savitzky-Golay filter and multi-scale principal component analysis (MSPCA), (ii) extract features from EEG signals using signal decomposition representations based on empirical mode decomposition (EMD), discrete wavelet transform (DWT), and dual-tree complex wavelet transform (DTCWT) allowing to overcome the non-linearity and non-stationary of EEG signals, and (iii) allocate the feature vector to the relevant class ( i.e., seizure class "ictal" or free seizure class "interictal") using machine learning techniques such as support vector machine (SVM), k-nearest neighbor ( k-NN), and linear discriminant analysis (LDA). The experimental results were based on two EEG datasets generated from the CHB-MIT database with and without overlapping process. The results obtained have shown the effectiveness of the proposed method that allows achieving a higher classification accuracy rate up to 100% and also outperforms similar state-of-the-art methods.

3.
J Biomed Res ; 34(3): 162-169, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32561696

RESUMO

Epileptic seizures are known for their unpredictable nature. However, recent research provides that the transition to seizure event is not random but the result of evidence accumulations. Therefore, a reliable method capable to detect these indications can predict seizures and improve the life quality of epileptic patients. Seizures periods are generally characterized by epileptiform discharges with different changes including spike rate variation according to the shapes, spikes, and the amplitude. In this study, spike rate is used as the indicator to anticipate seizures in electroencephalogram (EEG) signal. Spikes detection step is used in EEG signal during interictal, preictal, and ictal periods followed by a mean filter to smooth the spike number. The maximum spike rate in interictal periods is used as an indicator to predict seizures. When the spike number in the preictal period exceeds the threshold, an alarm is triggered. Using the CHB-MIT database, the proposed approach has ensured 92% accuracy in seizure prediction for all patients.

4.
BMC Biomed Eng ; 1: 13, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32903357

RESUMO

BACKGROUND: Due to the presence of high noise level in tomographic series of energy filtered transmission electron microscopy (EFTEM) images, alignment and 3D reconstruction steps become so difficult. To improve the alignment process which will in turn allow a more accurate and better three dimensional tomography reconstructions, a preprocessing step should be applied to the EFTEM data series. RESULTS: Experiments with real EFTEM data series at low SNR, show the feasibility and the accuracy of the proposed denoising approach being competitive with the best existing methods for Poisson image denoising. The effectiveness of the proposed denoising approach is thanks to the use of a nonparametric Bayesian estimation in the Contourlet Transform with Sharp Frequency Localization Domain (CTSD) and variance stabilizing transformation (VST). Furthermore, the optimal inverse Anscome transformation to obtain the final estimate of the denoised images, has allowed an accurate tomography reconstruction. CONCLUSION: The proposed approach provides qualitative information on the 3D distribution of individual chemical elements on the considered sample.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1761-4, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736619

RESUMO

In thought-based steering of robots, error potentials (ErrP) can appear when the action resulting from the brain-machine interface (BMI) classifier/controller does not correspond to the user's thought. Using the Steady State Visual Evoked Potentials (SSVEP) techniques, ErrP, which appear when a classification error occurs, are not easily recognizable by only examining the temporal or frequency characteristics of EEG signals. A supplementary classification process is therefore needed to identify them in order to stop the course of the action and back up to a recovery state. This paper presents a set of time-frequency (t-f) features for the detection and classification of EEG ErrP in extra-brain activities due to misclassification observed by a user exploiting non-invasive BMI and robot control in the task space. The proposed features are able to characterize and detect ErrP activities in the t-f domain. These features are derived from the information embedded in the t-f representation of EEG signals, and include the Instantaneous Frequency (IF), t-f information complexity, SVD information, energy concentration and sub-bands' energies. The experiment results on real EEG data show that the use of the proposed t-f features for detecting and classifying EEG ErrP achieved an overall classification accuracy up to 97% for 50 EEG segments using 2-class SVM classifier.


Assuntos
Eletroencefalografia/métodos , Potenciais Evocados Visuais , Robótica/instrumentação , Interfaces Cérebro-Computador , Humanos , Modelos Teóricos
6.
IEEE Trans Image Process ; 14(2): 231-40, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15700528

RESUMO

A novel Bayesian nonparametric estimator in the Wavelet domain is presented. In this approach, a prior model is imposed on the wavelet coefficients designed to capture the sparseness of the wavelet expansion. Seeking probability models for the marginal densities of the wavelet coefficients, the new family of Bessel K forms (BKF) densities are shown to fit very well to the observed histograms. Exploiting this prior, we designed a Bayesian nonlinear denoiser and we derived a closed form for its expression. We then compared it to other priors that have been introduced in the literature, such as the generalized Gaussian density (GGD) or the alpha-stable models, where no analytical form is available for the corresponding Bayesian denoisers. Specifically, the BKF model turns out to be a good compromise between these two extreme cases (hyperbolic tails for the alpha-stable and exponential tails for the GGD). Moreover, we demonstrate a high degree of match between observed and estimated prior densities using the BKF model. Finally, a comparative study is carried out to show the effectiveness of our denoiser which clearly outperforms the classical shrinkage or thresholding wavelet-based techniques.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Armazenamento e Recuperação da Informação/métodos , Reconhecimento Automatizado de Padrão/métodos , Teorema de Bayes , Gráficos por Computador , Simulação por Computador , Modelos Estatísticos , Análise Numérica Assistida por Computador , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Processamento de Sinais Assistido por Computador , Técnica de Subtração , Interface Usuário-Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...