Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(33): e2302661120, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37549288

RESUMO

Polycystic Echinococcosis (PE), a neglected life-threatening zoonotic disease caused by the cestode Echinococcus vogeli, is endemic in the Amazon. Despite being treatable, PE reaches a case fatality rate of around 29% due to late or missed diagnosis. PE is sustained in Pan-Amazonia by a complex sylvatic cycle. The hunting of its infected intermediate hosts (especially the lowland paca Cuniculus paca) enables the disease to further transmit to humans, when their viscera are improperly handled. In this study, we compiled a unique dataset of host occurrences (~86000 records) and disease infections (~400 cases) covering the entire Pan-Amazonia and employed different modeling and statistical tools to unveil the spatial distribution of PE's key animal hosts. Subsequently, we derived a set of ecological, environmental, climatic, and hunting covariates that potentially act as transmission risk factors and used them as predictors of two independent Maximum Entropy models, one for animal infections and one for human infections. Our findings indicate that temperature stability promotes the sylvatic circulation of the disease. Additionally, we show how El Niño-Southern Oscillation (ENSO) extreme events disrupt hunting patterns throughout Pan-Amazonia, ultimately affecting the probability of spillover. In a scenario where climate extremes are projected to intensify, climate change at regional level appears to be indirectly driving the spillover of E. vogeli. These results hold substantial implications for a wide range of zoonoses acquired at the wildlife-human interface for which transmission is related to the manipulation and consumption of wild meat, underscoring the pressing need for enhanced awareness and intervention strategies.


Assuntos
Equinococose , Echinococcus , Animais , Humanos , Hotspot de Doença , Equinococose/epidemiologia , Zoonoses/epidemiologia , Fatores de Risco , El Niño Oscilação Sul
2.
Mol Ecol ; 32(14): 3842-3858, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37277946

RESUMO

Populations on the edge of a species' distribution may represent an important source of adaptive diversity, yet these populations tend to be more fragmented and are more likely to be geographically isolated. Lack of genetic exchanges between such populations, due to barriers to animal movement, can not only compromise adaptive potential but also lead to the fixation of deleterious alleles. The south-eastern edge of chimpanzee distribution is particularly fragmented, and conflicting hypotheses have been proposed about population connectivity and viability. To address this uncertainty, we generated both mitochondrial and MiSeq-based microsatellite genotypes for 290 individuals ranging across western Tanzania. While shared mitochondrial haplotypes confirmed historical gene flow, our microsatellite analyses revealed two distinct clusters, suggesting two populations currently isolated from one another. However, we found evidence of high levels of gene flow maintained within each of these clusters, one of which covers an 18,000 km2 ecosystem. Landscape genetic analyses confirmed the presence of barriers to gene flow with rivers and bare habitats highly restricting chimpanzee movement. Our study demonstrates how advances in sequencing technologies, combined with the development of landscape genetics approaches, can resolve ambiguities in the genetic history of critical populations and better inform conservation efforts of endangered species.


Assuntos
Variação Genética , Genética Populacional , Animais , Variação Genética/genética , Ecossistema , Pan troglodytes/genética , Fluxo Gênico , Repetições de Microssatélites/genética , Haplótipos/genética
3.
PeerJ ; 11: e14526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647446

RESUMO

Although the Amazon has the greatest diversity of primates, there are still taxonomic uncertainties for many taxa, such as the species of the Saguinus mystax group. The most geographically broadly distributed and phenotypically diverse species in this group is S. mystax, and its phenotypic diversity has been recognized as three subspecies-S. mystax mystax, S. mystax pileatus and S. mystax pluto-with non-overlapping geographic distributions. In this sense, we carried out an extensive field survey in their distribution areas and used a framework of taxonomic hypothesis testing of genomic data combined with an integrative taxonomic decision-making framework to carry out a taxonomic revision of S. mystax. Our tests supported the existence of three lineages/species. The first species corresponds to Saguinus mystax mystax from the left bank of the Juruá River, which was raised to the species level, and we also discovered and described animals from the Juruá-Tefé interfluve previously attributed to S. mystax mystax as a new species. The subspecies S. m. pileatus and S. m. pluto are recognized as a single species, under a new nomenclatural combination. However, given their phenotypic distinction and allopatric distribution, they potentially are a manifestation of an early stage of speciation, and therefore we maintain their subspecific designations.


Assuntos
Saguinus , Animais , Abelhas
4.
J Hum Evol ; 174: 103293, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36493598

RESUMO

There have been multiple published phylogenetic analyses of platyrrhine primates (New World monkeys) using both morphological and molecular data, but relatively few that have integrated both types of data into a total evidence approach. Here, we present phylogenetic analyses of recent and fossil platyrrhines, based on a total evidence data set of 418 morphological characters and 10.2 kilobases of DNA sequence data from 17 nuclear genes taken from previous studies, using undated and tip-dating approaches in a Bayesian framework. We compare the results of these analyses with molecular scaffold analyses using maximum parsimony and Bayesian approaches, and we use a formal information theoretic approach to identify unstable taxa. After a posteriori pruning of unstable taxa, the undated and tip-dating topologies appear congruent with recent molecular analyses and support largely similar relationships, with strong support for Stirtonia as a stem alouattine, Neosaimiri as a stem saimirine, Cebupithecia as a stem pitheciine, and Lagonimico as a stem callitrichid. Both analyses find three Greater Antillean subfossil platyrrhines (Xenothrix, Antillothrix, and Paralouatta) to form a clade that is related to Callicebus, congruent with a single dispersal event by the ancestor of this clade to the Greater Antilles. They also suggest that the fossil Proteropithecia may not be closely related to pitheciines, and that all known platyrrhines older than the Middle Miocene are stem taxa. Notably, the undated analysis found the Early Miocene Panamacebus (currently recognized as the oldest known cebid) to be unstable, and the tip-dating analysis placed it outside crown Platyrrhini. Our tip-dating analysis supports a late Oligocene or earliest Miocene (20.8-27.0 Ma) age for crown Platyrrhini, congruent with recent molecular clock analyses.


Assuntos
Evolução Biológica , Pitheciidae , Animais , Filogenia , Teorema de Bayes , Platirrinos/anatomia & histologia , Fósseis
5.
Mol Ecol ; 31(14): 3888-3902, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35638312

RESUMO

Mitochondrial DNA remains a cornerstone for molecular ecology, especially for study species from which high-quality tissue samples cannot be easily obtained. Methods using mitochondrial markers are usually reliant on reference databases, but these are often incomplete. Furthermore, available mitochondrial genomes often lack crucial metadata, such as sampling location, limiting their utility for many analyses. Here, we assembled 205 new mitochondrial genomes for platyrrhine primates, most from the Amazon and with known sampling locations. We present a dated mitogenomic phylogeny based on these samples along with additional published platyrrhine mitogenomes, and use this to assess support for the long-standing riverine barrier hypothesis (RBH), which proposes that river formation was a major driver of speciation in Amazonian primates. Along the Amazon, Negro, and Madeira rivers, we found mixed support for the RBH. While we identified divergences that coincide with a river barrier, only some occur synchronously and also overlap with the proposed dates of river formation. The most compelling evidence is for the Amazon river potentially driving speciation within bearded saki monkeys (Chiropotes spp.) and within the smallest extant platyrrhines, the marmosets and tamarins. However, we also found that even large rivers do not appear to be barriers for some primates, including howler monkeys (Alouatta spp.), uakaris (Cacajao spp.), sakis (Pithecia spp.), and robust capuchins (Sapajus spp.). Our results support a more nuanced, clade-specific effect of riverine barriers and suggest that other evolutionary mechanisms, besides the RBH and allopatric speciation, may have played an important role in the diversification of platyrrhines.


Assuntos
Genoma Mitocondrial , Rios , Animais , Evolução Biológica , Genoma Mitocondrial/genética , Filogenia , Primatas
6.
Mol Phylogenet Evol ; 173: 107509, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35589052

RESUMO

Bald uakaris, genus Cacajao, are Amazonian primates currently classified as one species and four subspecies based on the patterns of pelage coloration. In this study, we test if their current taxonomy is represented by the phylogenetic relationship of the main lineages retrieved from molecular data. We included, for the first time, all bald uakari taxa in a mitochondrial (cytochrome b) and genome-wide (ddRAD) phylogenetic analyses. We also examined the pattern of pelage colouration in specimens from zoological collections. Having determined the number of lineages using Maximum Likelihood and the species tree using coalescent analyses, we test their divergence time using a Bayesian approach. While the cytochrome b analysis only recovered two clades, the ddRAD analysis supported the reciprocal monophyly of five lineages of bald uakaris, with all clades including only individuals with distinct and exclusive diagnostic phenotypic characters. We found that species diversification in Cacajao occurred during the last 300 Kya and may have been influenced by the formation of rivers and flooded forests in western Amazonia. We propose that the four bald uakari subspecies currently recognised can be upgraded to species level and we describe the white uakaris from the basin of the Rio Tarauacá as a new species.


Assuntos
Pitheciidae , Animais , Teorema de Bayes , Citocromos b/genética , DNA Mitocondrial/genética , Genoma , Filogenia
7.
Zool Res ; 42(6): 761-771, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34643070

RESUMO

The pygmy marmoset, the smallest of the anthropoid primates, has a broad distribution in Western Amazonia. Recent studies using molecular and morphological data have identified two distinct species separated by the Napo and Solimões-Amazonas rivers. However, reconciling this new biological evidence with current taxonomy, i.e., two subspecies, Cebuella pygmaea pygmaea (Spix, 1823) and Cebuella pygmaea niveiventris (Lönnberg, 1940), was problematic given the uncertainty as to whether Spix's pygmy marmoset ( Cebuella pygmaea pygmaea) was collected north or south of the Napo and Solimões-Amazonas rivers, making it unclear to which of the two newly revealed species the name pygmaea would apply. Here, we present the first molecular data from Spix's type specimen of Cebuella pygmaea, as well as novel mitochondrial genomes from modern pygmy marmosets sampled near the type locality (Tabatinga) on both sides of the river. With these data, we can confirm the correct names of the two species identified, i.e., C. pygmaea for animals north of the Napo and Solimões-Amazonas rivers and C. niveiventris for animals south of these two rivers. Phylogenetic analyses of the novel genetic data placed into the context of cytochrome b gene sequences from across the range of pygmy marmosets further led us to re-evaluate the geographical distribution for the two Cebuella species. We dated the split of these two species to 2.54 million years ago. We discuss additional, more recent, subdivisions within each lineage, as well as potential contact zones between the two species in the headwaters of these rivers.


Assuntos
Callitrichinae/classificação , Callitrichinae/genética , DNA Mitocondrial/genética , Filogenia , Distribuição Animal , Animais , Brasil , Especificidade da Espécie
8.
Sci Rep ; 11(1): 15665, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341361

RESUMO

Amazonia has the richest primate fauna in the world. Nonetheless, the diversity and distribution of Amazonian primates remain little known and the scarcity of baseline data challenges their conservation. These challenges are especially acute in the Amazonian arc of deforestation, the 2500 km long southern edge of the Amazonian biome that is rapidly being deforested and converted to agricultural and pastoral landscapes. Amazonian marmosets of the genus Mico are little known endemics of this region and therefore a priority for research and conservation efforts. However, even nascent conservation efforts are hampered by taxonomic uncertainties in this group, such as the existence of a potentially new species from the Juruena-Teles Pires interfluve hidden within the M. emiliae epithet. Here we test if these marmosets belong to a distinct species using new morphological, phylogenomic, and geographic distribution data analysed within an integrative taxonomic framework. We discovered a new, pseudo-cryptic Mico species hidden within the epithet M. emiliae, here described and named after Horacio Schneider, the pioneer of molecular phylogenetics of Neotropical primates. We also clarify the distribution, evolutionary and morphological relationships of four other Mico species, bridging Linnean, Wallacean, and Darwinian shortfalls in the conservation of primates in the Amazonian arc of deforestation.


Assuntos
Callitrichinae , Conservação dos Recursos Naturais , Agricultura , Animais , Brasil , Callithrix , Ecossistema , Filogenia
9.
Proc Biol Sci ; 288(1957): 20210552, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34403636

RESUMO

Interactions between hosts and their resident microbial communities are a fundamental component of fitness for both agents. Though recent research has highlighted the importance of interactions between animals and their bacterial communities, comparative evidence for fungi is lacking, especially in natural populations. Using data from 49 species, we present novel evidence of strong covariation between fungal and bacterial communities across the host phylogeny, indicative of recruitment by hosts for specific suites of microbes. Using co-occurrence networks, we demonstrate marked variation across host taxonomy in patterns of covariation between bacterial and fungal abundances. Host phylogeny drives differences in the overall richness of bacterial and fungal communities, but the effect of diet on richness was only evident in the mammalian gut microbiome. Sample type, tissue storage and DNA extraction method also affected bacterial and fungal community composition, and future studies would benefit from standardized approaches to sample processing. Collectively these data indicate fungal microbiomes may play a key role in host fitness and suggest an urgent need to study multiple agents of the animal microbiome to accurately determine the strength and ecological significance of host-microbe interactions.


Assuntos
Microbiota , Micobioma , Animais , Bactérias/genética , Interações entre Hospedeiro e Microrganismos , Filogenia
10.
PeerJ ; 7: e7019, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31380146

RESUMO

Although the Atlantic Forest marmosets (Callithrix spp.) are among the best studied Neotropical primates, the Amazonian marmosets (Callibella humilis, Cebuella spp. and Mico spp.) are much less well-known. Even species diversity and distributions are yet to be properly determined because field data and materials currently available in scientific collections do not allow comprehensive taxonomic studies of Amazonian marmosets. From 2015 to 2018, we conducted 10 expeditions in key-areas within southern Amazonia where little or no information on marmosets was available. In one such region-the Tapajós-Jamanxim interfluve-we recorded marmosets with a distinctive pelage pigmentation pattern suggesting they could represent a new species. We tested this hypothesis using an integrative taxonomic framework that included phylogenomic data (ddRAD sequences), pelage pigmentation characters, and distribution records. We found that the marmosets of the northern Tapajós-Jamanxim interfluve have unique states in pelage pigmentation characters, form a clade (100% support) in our Bayesian and Maximum-Likelihood phylogenies, and occur in an area isolated from other taxa by rivers. The integration of these lines of evidence leads us to describe a new marmoset species in the genus Mico, named after the Munduruku Amerindians of the Tapajós-Jamanxim interfluve, southwest of Pará State, Brazil.

11.
Mol Phylogenet Evol ; 132: 117-137, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30496844

RESUMO

The taxonomy of the titi monkeys (Callicebinae) has recently received considerable attention. It is now recognised that this subfamily is composed of three genera with 33 species, seven of them described since 2002. Here, we describe a new species of titi, Plecturocebus, from the municipality of Alta Floresta, Mato Grosso, Brazil. We adopt an integrative taxonomic approach that includes phylogenomic analyses, pelage characters, and locality records. A reduced representation genome-wide approach was employed to assess phylogenetic relationships among species of the eastern Amazonian clade of the Plecturocebus moloch group. Using existing records, we calculated the Extent of Occurrence (EOO) of the new species and estimated future habitat loss for the region based on predictive models. We then evaluated the species' conservation status using the IUCN Red list categories and criteria. The new species presents a unique combination of morphological characters: (1) grey agouti colouration on the crown and dorsal parts; (2) entirely bright red-brown venter; (3) an almost entirely black tail with a pale tip; and (4) light yellow colouration of the hair on the cheeks contrasting with bright red-brown hair on the sides of the face. Our phylogenetic reconstructions based on maximum-likelihood and Bayesian methods revealed well-supported species relationships, with the Alta Floresta taxon as sister to P. moloch + P. vieirai. The species EOO is 10,166,653 ha and we predict a total habitat loss of 86% of its original forest habitat under a "business as usual" scenario in the next 24 years, making the newly discovered titi monkey a Critically Endangered species under the IUCN A3c criterion. We give the new titi monkey a specific epithet based on: (1) clear monophyly of this lineage revealed by robust genomic and mitochondrial data; (2) distinct and diagnosable pelage morphology; and (3) a well-defined geographical distribution with clear separation from other closely related taxa. Urgent conservation measures are needed to safeguard the future of this newly discovered and already critically endangered primate.


Assuntos
Pitheciidae/classificação , Animais , Teorema de Bayes , Brasil , Citocromos b/genética , Ecossistema , Espécies em Perigo de Extinção , Genoma , Mitocôndrias/genética , Filogenia , Pitheciidae/anatomia & histologia , Pitheciidae/genética , Polimorfismo de Nucleotídeo Único
12.
Mol Phylogenet Evol ; 124: 137-150, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29545109

RESUMO

Phylogenetic relationships amongst the robust capuchin monkeys (genus Sapajus) are poorly understood. Morphology-based taxonomies have recognized anywhere from one to twelve different species. The current IUCN (2017) classification lists eight robust capuchins: S. xanthosternos, S. nigritus, S. robustus, S. flavius, S. libidinosus, S. cay, S. apella and S. macrocephalus. Here, we assembled the first phylogenomic data set for Sapajus using ultra-conserved elements (UCEs) to reconstruct a capuchin phylogeny. All phylogenomic analyses strongly supported a deep divergence of Sapajus and Cebus clades within the capuchin monkeys, and provided support for Sapajus nigritus, S. robustus and S. xanthosternos as distinct species. However, the UCE phylogeny lumped the putative species S. cay, S. libidinosus, S. apella, S. macrocephalus, and S. flavius together as a single widespread lineage. A SNP phylogeny constructed from the UCE data was better resolved and recovered S. flavius and S. libidinosus as sister species; however, S. apella, S. macrocephalus, and S. cay individuals were recovered in two geographic clades, from northeastern and southwestern Amazon, rather than clustering by currently defined morphospecies. STRUCTURE analysis of population clustering revealed widespread admixture among Sapajus populations within the Amazon and even into the Cerrado and Atlantic Forest. Difficulty in assigning species by morphology may be a result of widespread population admixture facilitated through frequent movement across major rivers and even ecosystems by robust capuchin monkeys.


Assuntos
Cebus/classificação , Cebus/genética , Pool Gênico , Genômica , Filogenia , Animais , Calibragem , Cebinae , Ecossistema , Genética Populacional , Geografia , Funções Verossimilhança , Polimorfismo de Nucleotídeo Único/genética , América do Sul
13.
Mol Phylogenet Evol ; 120: 170-182, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29175546

RESUMO

The pygmy marmoset, Cebuella pygmaea, the smallest of the New World monkeys, has one of the largest geographical distributions of the Amazonian primates. Two forms have been recognized: Cebuella pygmaea pygmaea (Spix, 1823), and C. p. niveiventris Lönnberg, 1940. In this study, we investigated if the separation of pygmy marmosets into these two clades can be corroborated by molecular data. We also examine and compare coloration of the pelage in light of the new molecular results. We analyzed the mtDNA cytochrome b gene and, for the first time for any Neotropical primate, we used a reduced representation genome sequencing approach (ddRADseq) to obtain data for recently collected, geographically representative samples from the Rio Japurá, a northern tributary of the Rio Solimões and from the Javarí, Jutaí, Juruá, Madeira and Purus river basins, all tributaries south of the Solimões. We estimated phylogenies and diversification times under both maximum likelihood and Bayesian inference criteria. Our analysis showed two highly supported clades, with intraclade divergences much smaller than interclade divergences, indicating two species of Cebuella: one from the Rio Japurá and one to the south of Solimões. The interpretation of our results in light of the current taxonomy is not trivial however. Lönnberg stated that the type of Spix's pygmy marmoset (type locality 'near Tabatinga') was obtained from the south of the Solimões, and his description of the distinct niveiventris from Lago Ipixuna, south of the Solimões and several hundred kilometres east of Tabatinga, was based on a comparison with specimens that he determined as typical pygmaea that were from the upper Rio Juruá (south of the Solimões). As such it remains uncertain whether the name pygmaea should be applicable to the pygmy marmosets north of the Rio Solimões (Tabatinga type locality) or south (near Tabatinga but across the Solimões). Finally, our analysis of pelage coloration revealed three phenotypic forms: (1) south of the Rio Solimoes, (2) Eirunepé-Acre, upper Juruá basin; and (3) Japurá. More samples from both sides of Solimões in the region of Tabatinga will be necessary to ascertain the exact type locality for Spix's pygmaea and to resolve the current uncertainties surrounding pygmy marmoset taxonomy.


Assuntos
Callithrix/classificação , Animais , Teorema de Bayes , Callithrix/genética , Citocromos b/classificação , Citocromos b/genética , Citocromos b/metabolismo , DNA/química , DNA/isolamento & purificação , DNA/metabolismo , Funções Verossimilhança , Masculino , Fenótipo , Filogenia , Análise de Sequência de DNA
14.
Sci Rep ; 7(1): 7737, 2017 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-28798406

RESUMO

New World primates feature a complex colour vision system. Most species have polymorphic colour vision where males have a dichromatic colour perception and females can be either dichromatic or trichromatic. The adaptive value of high allelic diversity of opsins, a light sensitive protein, found in primates' eyes remains unknown. Studies revealing the allelic diversity are important as they shed light on our understanding of the adaptive value of differences in the colouration of species and their ecologies. Here we investigate the allelic types found in Pitheciidae, an understudied New World primate family, revealing the diversity of medium/long wavelength sensitive opsins both in cryptic and conspicuous species of this primate family. We found five alleles in Cacajao, six in Callicebinae (i.e. Plecturocebus, Cheracebus, and Callicebus), four in Chiropotes, and three in Pithecia, some of them reported for the first time. Both cryptic and conspicuous species in this group presented high allelic diversity.


Assuntos
Variação Genética , Pitheciidae/genética , Opsinas de Bastonetes/genética , Alelos , Animais , Percepção de Cores , Visão de Cores , Feminino , Estudos de Associação Genética , Genótipo , Masculino
15.
Front Zool ; 13: 10, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26937245

RESUMO

BACKGROUND: Titi monkeys, Callicebus, comprise the most species-rich primate genus-34 species are currently recognised, five of them described since 2005. The lack of molecular data for titi monkeys has meant that little is known of their phylogenetic relationships and divergence times. To clarify their evolutionary history, we assembled a large molecular dataset by sequencing 20 nuclear and two mitochondrial loci for 15 species, including representatives from all recognised species groups. Phylogenetic relationships were inferred using concatenated maximum likelihood and Bayesian analyses, allowing us to evaluate the current taxonomic hypothesis for the genus. RESULTS: Our results show four distinct Callicebus clades, for the most part concordant with the currently recognised morphological species-groups-the torquatus group, the personatus group, the donacophilus group, and the moloch group. The cupreus and moloch groups are not monophyletic, and all species of the formerly recognized cupreus group are reassigned to the moloch group. Two of the major divergence events are dated to the Miocene. The torquatus group, the oldest radiation, diverged c. 11 Ma; and the Atlantic forest personatus group split from the ancestor of all donacophilus and moloch species at 9-8 Ma. There is little molecular evidence for the separation of Callicebus caligatus and C. dubius, and we suggest that C. dubius should be considered a junior synonym of a polymorphic C. caligatus. CONCLUSIONS: Considering molecular, morphological and biogeographic evidence, we propose a new genus level taxonomy for titi monkeys: Cheracebus n. gen. in the Orinoco, Negro and upper Amazon basins (torquatus group), Callicebus Thomas, 1903, in the Atlantic Forest (personatus group), and Plecturocebus n. gen. in the Amazon basin and Chaco region (donacophilus and moloch groups).

16.
Am J Primatol ; 78(5): 493-506, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26031411

RESUMO

Pitheciids are known for their frugivorous diets, but there has been no broad-scale comparison of fruit genera used by these primates that range across five geographic regions in South America. We compiled 31 fruit lists from data collected from 18 species (three Cacajao, six Callicebus, five Chiropotes, and four Pithecia) at 26 study sites in six countries. Together, these lists contained 455 plant genera from 96 families. We predicted that 1) closely related Chiropotes and Cacajao would demonstrate the greatest similarity in fruit lists; 2) pitheciids living in closer geographic proximity would have greater similarities in fruit lists; and 3) fruit genus richness would be lower in lists from forest fragments than continuous forests. Fruit genus richness was greatest for the composite Chiropotes list, even though Pithecia had the greatest overall sampling effort. We also found that the Callicebus composite fruit list had lower similarity scores in comparison with the composite food lists of the other three genera (both within and between geographic areas). Chiropotes and Pithecia showed strongest similarities in fruit lists, followed by sister taxa Chiropotes and Cacajao. Overall, pitheciids in closer proximity had more similarities in their fruit list, and this pattern was evident in the fruit lists for both Callicebus and Chiropotes. There was no difference in the number of fruit genera used by pitheciids in habitat fragments and continuous forest. Our findings demonstrate that pitheciids use a variety of fruit genera, but phylogenetic and geographic patterns in fruit use are not consistent across all pitheciid genera. This study represents the most extensive examination of pitheciid fruit consumption to date, but future research is needed to investigate the extent to which the trends in fruit genus richness noted here are attributable to habitat differences among study sites, differences in feeding ecology, or a combination of both.


Assuntos
Dieta/veterinária , Frutas/classificação , Herbivoria , Pitheciidae/fisiologia , Plantas/classificação , Animais , Ecossistema , Florestas , Geografia , Filogeografia
17.
PLoS One ; 10(7): e0129789, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26147203

RESUMO

Although the brown howler monkey (Alouatta clamitans) is a relatively well-studied Neotropical primate, its behavioral and dietary flexibility at the intra-population level remains poorly documented. This study presents data collected on the behavior and ecology of two closely located groups of brown howlers during the same period at the RPPN Feliciano Miguel Abdala in southeastern Brazil. One group occupied a primary valley habitat, henceforth the Valley Group (VG), and the other group occupied a regenerating hillside habitat, the Hill Group (HG). We hypothesized differences in the behavior and ecological parameters between these sympatric groups due to the predicted harsher conditions on the hillside, compared to the valley. We measured several habitat parameters within the home range of both groups and collected data on the activity budget, diet and day range lengths, from August to November 2005, between dawn and dusk. In total, behavioral data were collected for 26 (318 h) and 28 (308 h) sampling days for VG and HG, respectively. As we predicted, HG spent significantly more time feeding and consumed less fruit and more leaves than VG, consistent with our finding that the hillside habitat was of lower quality. However, HG also spent less time resting and more time travelling than VG, suggesting that the monkeys had to expend more time and energy to obtain high-energy foods, such as fruits and flowers that were more widely spaced in their hill habitat. Our results revealed that different locations in this forest vary in quality and raise the question of how different groups secure their home ranges. Fine-grained comparisons such as this are important to prioritize conservation and management areas within a reserve.


Assuntos
Alouatta/fisiologia , Comportamento Alimentar/fisiologia , Animais , Brasil , Dieta/métodos , Ecologia/métodos , Ecossistema , Frutas , Folhas de Planta , Estações do Ano , Simpatria/fisiologia
18.
Mol Phylogenet Evol ; 82 Pt B: 436-54, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25305518

RESUMO

The squirrel monkey, Saimiri, is a pan-Amazonian Pleistocene radiation. We use statistical phylogeographic methods to create a mitochondrial DNA-based timetree for 118 squirrel monkey samples across 68 localities spanning all Amazonian centers of endemism, with the aim of better understanding (1) the effects of rivers as barriers to dispersal and distribution; (2) the area of origin for modern Saimiri; (3) whether ancestral Saimiri was a lowland lake-affiliated or an upland forest taxa; and (4) the effects of Pleistocene climate fluctuation on speciation. We also use our topology to help resolve current controversies in Saimiri taxonomy and species relationships. The Rondônia and Inambari centers in the southern Amazon were recovered as the most likely areas of origin for Saimiri. The Amazon River proved a strong barrier to dispersal, and squirrel monkey expansion and diversification was rapid, with all speciation events estimated to occur between 1.4 and 0.6Ma, predating the last three glacial maxima and eliminating climate extremes as the main driver of squirrel monkey speciation. Saimiri expansion was concentrated first in central and western Amazonia, which according to the "Young Amazon" hypothesis was just becoming available as floodplain habitat with the draining of the Amazon Lake. Squirrel monkeys also expanded and diversified east, both north and south of the Amazon, coincident with the formation of new rivers. This evolutionary history is most consistent with a Young Amazon Flooded Forest Taxa model, suggesting Saimiri has always maintained a lowland wetlands niche and was able to greatly expand its range with the transition from a lacustrine to a riverine system in Amazonia. Saimiri vanzolinii was recovered as the sister group to one clade of Saimiri ustus, discordant with the traditional Gothic vs. Roman morphological division of squirrel monkeys. We also found paraphyly within each of the currently recognized species: S. sciureus, S. ustus, and S. macrodon. We discuss evidence for taxonomic revision within the genus Saimiri, and the need for future work using nuclear markers.


Assuntos
Evolução Biológica , Filogenia , Saimiri/classificação , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Ecossistema , Modelos Genéticos , Filogeografia , Análise de Sequência de DNA , América do Sul
19.
Mol Phylogenet Evol ; 82 Pt B: 518-29, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25451803

RESUMO

New research presented in this special issue of Molecular Phylogenetics and Evolution on the "Phylogeny and Biogeography of Neotropical Primates" greatly improves our understanding of the evolutionary history of the New World monkeys and provides insights into the multiple platyrrhine radiations, diversifications, extinctions, and recolonizations that have taken place over time and over space in the Neotropics. Here, we synthesize genetic and biogeographic research from the past several years to construct an overarching hypothesis for platyrrhine evolution. We also highlight continuing controversies in Neotropical primate biogeography, such as whether the location of origin of platyrrhines was Africa or Asia; whether Patagonian fossil primates are stem or crown platyrrhines; and whether cis- and trans-Andean Neotropical primates were subject to vicariance through Andes mountain building, or instead diversified through isolation in mountain valleys after skirting around the Andes on the northwestern coast of South America. We also consider the role of the Amazon River and its major tributaries in shaping platyrrhine biodiversity, and how and when primates from the Amazon reached the Atlantic Forest. A key focus is on primate colonizations and extirpations in Central America, the Andes, and the seasonally dry tropical forests and savannas (such as the Llanos, Caatinga, and Cerrado habitats), all ecosystems that have been understudied up until now for primates. We suggest that most primates currently inhabiting drier open habitats are relatively recent arrivals, having expanded from rainforest habitats in the Pleistocene. We point to the Pitheciidae as the taxonomic group most in need of further phylogenetic and biogeographic research. Additionally, genomic studies on the Platyrrhini are deeply needed and are expected to bring new surprises and insights to the field of Neotropical primate biogeography.


Assuntos
Evolução Biológica , Filogenia , Platirrinos/classificação , Animais , Biodiversidade , América Central , DNA Mitocondrial/genética , Ecossistema , Fósseis , Análise de Sequência de DNA , América do Sul
20.
Mol Phylogenet Evol ; 82 Pt B: 400-12, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25285613

RESUMO

The role of Amazonian rivers as drivers of speciation through vicariance remains controversial. Here we explore the riverine hypothesis by comparing spatial and temporal concordances in pattern of diversification for all diurnal primates of Rio Negro and its largest tributary, Rio Branco. We built a comprehensive comparative phylogenetic timetree to identify sister lineages of primates based on mitochondrial cytochrome b DNA sequences from 94 samples, including 19 of the 20 species of diurnal primates from our study region and 17 related taxa from elsewhere. Of the ten primate genera found in this region, three had populations on opposite banks of Rio Negro that formed reciprocally monophyletic clades, with roughly similar divergence times (Cebus: 1.85 Ma, HPD 95% 1.19-2.62; Callicebus: 0.83 Ma HPD 95% 0.36-1.32, Cacajao: 1.09 Ma, 95% HPD 0.58-1.77). This also coincided with time of divergence of several allopatric species of Amazonian birds separated by this river as reported by other authors. Our data offer support for the riverine hypothesis and for a Plio-Pleistocene time of origin for Amazonian drainage system. We showed that Rio Branco was an important geographical barrier, limiting the distribution of six primate genera: Cacajao, Callicebus, Cebus to the west and Pithecia, Saguinus, Sapajus to the east. The role of this river as a vicariant agent however, was less clear. For example, Chiropotes sagulata on the left bank of the Rio Branco formed a clade with C. chiropotes from the Amazonas Department of Venezuela, north of Rio Branco headwaters, with C. israelita on the right bank of the Rio Branco as the sister taxon to C. chiropotes+C. sagulata. Although we showed that the formation of the Rio Negro was important in driving diversification in some of our studied taxa, future studies including more extensive sampling of markers across the genome would help determine what processes contributed to the evolutionary history of the remaining primate genera.


Assuntos
Especiação Genética , Filogenia , Platirrinos/classificação , Animais , Teorema de Bayes , Brasil , Citocromos b/genética , DNA Mitocondrial/genética , Variação Genética , Geografia , Modelos Genéticos , Platirrinos/genética , Rios , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...