Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; 13(8): e2303018, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38117252

RESUMO

Silver sulfide nanoparticles (Ag2S-NP) hold promise for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA), and photothermal therapy (PTT). However, their NIR absorbance is relatively low, and previous formulations are synthesized using toxic precursors under harsh conditions and are not effectively cleared due to their large size. Herein, sub-5 nm Ag2S-NP are synthesized and encapsulated in biodegradable, polymeric nanoparticles (AgPCPP). All syntheses are conducted using biocompatible, aqueous reagents under ambient conditions. The encapsulation of Ag2S-NP in polymeric nanospheres greatly increases their NIR absorbance, resulting in enhanced optical imaging and PTT effects. AgPCPP nanoparticles exhibit potent contrast properties suitable for PA and NIRF imaging, as well as for computed tomography (CT). Furthermore, AgPCPP nanoparticles readily improve the conspicuity of breast tumors in vivo. Under NIR laser irradiation, AgPCPP nanoparticles significantly reduce breast tumor growth, leading to prolonged survival compared to free Ag2S-NP. Over time, AgPCPP retention in tissues gradually decreases, without any signs of acute toxicity, providing strong evidence of their safety and biodegradability. Therefore, AgPCPP may serve as a "one-for-all" theranostic agent that degrades into small components for excretion after fulfilling diagnostic and therapeutic tasks, offering good prospects for clinical translation.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/terapia , Fototerapia/métodos , Linhagem Celular Tumoral , Nanomedicina Teranóstica/métodos , Polímeros
2.
bioRxiv ; 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38076898

RESUMO

Silver sulfide nanoparticles (Ag 2 S-NP) have been proposed for various optical-based biomedical applications, such as near-infrared fluorescence (NIRF) imaging, photoacoustics (PA) and photothermal therapy (PTT). However, their absorbance is relatively low in the NIR window used in these applications, and previous formulations were synthesized using toxic precursors under harsh conditions and have clearance issues due to their large size. Herein, we synthesized sub-5 nm Ag 2 S-NP and encapsulated them in biodegradable, polymeric nanoparticles (AgPCPP). All syntheses were conducted using biocompatible reagents in the aqueous phase and under ambient conditions. We found that the encapsulation of Ag 2 S-NP in polymeric nanospheres greatly increases their NIR absorbance, resulting in enhanced optical imaging and photothermal heating effects. We therefore found that AgPCPP have potent contrast properties for PA and NIRF imaging, as well as for computed tomography (CT). We demonstrated the applicability of AgPCPP nanoparticles as a multimodal imaging probe that readily improves the conspicuity of breast tumors in vivo . PTT was performed using AgPCPP with NIR laser irradiation, which led to significant reduction in breast tumor growth and prolonged survival compared to free Ag 2 S-NP. Lastly, we observed a gradual decrease in AgPCPP retention in tissues over time with no signs of acute toxicity, thus providing strong evidence of safety and biodegradability. Therefore, AgPCPP may serve as a "one-for-all" theranostic agent that degrades into small components for excretion once the diagnostic and therapeutic tasks are fulfilled, thus providing good prospects for translation to clinical use.

3.
Nanoscale ; 14(7): 2735-2749, 2022 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35112689

RESUMO

Metal-based complexes are well-established cancer chemotherapeutic drug candidates. Although our knowledge regarding their exact activity vs. toxicity profile is incomplete, changes in cell membrane biophysical properties and cytoskeletal structures have been implicated as part of the mechanism of action. Thus, in this work, we characterised the effects of iron(II)-based complexes on the structural and morphological properties of epithelial non-tumorigenic (MCF 10A) and tumorigenic (MDA-MB-231) breast cell lines using atomic force microscopy (AFM), flow cytometry and immunofluorescence microscopy. At 24 h of exposure, both the MCF 10A and MDA-MB-231 cells experienced a cell softening, and an increase in size followed by a re-stiffening at 96 h. In addition, the triple negative breast cancer cell line, MDA-MB-231, sustained a notable cytoskeletal and mitochondrial reorganization with increased actin stress fibers and cell-to-cell communication structures. An extensive all-atom molecular dynamic simulation suggests a possible direct and unassisted internalization of the metallodrug candidate, and confirmed that the cellular effects could not be ascribed to the simple physical interaction of the iron-based complexes with the biological membrane. These observations provide an insight into a link between the mechanisms of action of such iron-based complexes as anti-cancer treatment and cytoskeletal architecture.


Assuntos
Antineoplásicos , Neoplasias da Mama , Neoplasias de Mama Triplo Negativas , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Compostos Ferrosos , Humanos , Ferro , Células MCF-7 , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
4.
Methods Mol Biol ; 2393: 773-796, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34837211

RESUMO

Gold nanoparticles (AuNP) are well-established contrast agents in computed tomography (CT) and photoacoustic imaging (PAI). A wide variety of AuNP sizes, shapes, and coatings have been reported for these applications. However, for clinical translation, AuNP should be excretable to avoid long-term accumulation and possible side effects. Sub-5 nm AuNP have the benefit to be excretable through kidney filtration, therefore their loading in biodegradable nanogels holds promise to result in contrast agents that have long circulation times in the vasculature and subsequent biodegradation for excretion. Polyphosphazenes are intrinsically biodegradable polymers capable of forming nanogels with high payloads, and to release their payloads upon degradation. The significant development in polyphosphazenes that have tailored degradation kinetics, and their formulation with drugs or contrast agents, has shown potential as a biodegradable platform for imaging vasculature and endogenous molecules, by combination of CT and PA modalities. Therefore, we herein present methods for the formulation of AuNP assemblies loaded in nanogels composed of biodegradable polyphosphazenes, with a size range from 50 to 200 nm. We describe protocols for their characterization by UV-vis spectroscopy, Fourier-transform infrared spectroscopy, various microscopy techniques, elemental quantification by induced coupling plasma optical emission spectroscopy and contrast production in both CT and PAI. Finally, we detail the methods to investigate their effect on cells, distribution in cells and imaging properties for detection of endogenous molecules.


Assuntos
Tomografia Computadorizada por Raios X , Meios de Contraste , Ouro , Nanopartículas Metálicas , Nanogéis , Análise Espectral
5.
ACS Appl Mater Interfaces ; 13(49): 58401-58410, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34846845

RESUMO

Most current nanoparticle formulations have relatively low clearance efficiency, which may hamper their likelihood for clinical translation. Herein, we sought to compare the clearance and cellular distribution profiles between sub-5 nm, renally-excretable silver sulfide nanoparticles (Ag2S-NPs) synthesized via either a bulk, high temperature, or a microfluidic, room temperature approach. We found that the thermolysis approach led to significant ligand degradation, but the surface coating shell was unaffected by the microfluidic synthesis. We demonstrated that the clearance was improved for Ag2S-NPs with intact ligands, with less uptake in the liver. Moreover, differential distribution in hepatic cells was observed, where Ag2S-NPs with degraded coatings tend to accumulate in Kupffer cells and those with intact coatings are more frequently found in hepatocytes. Therefore, understanding the impact of synthetic processes on ligand integrity and subsequent nano-biointeractions will aid in designing nanoparticle platforms with enhanced clearance and desired distribution profiles.


Assuntos
Materiais Revestidos Biocompatíveis/metabolismo , Nanopartículas/metabolismo , Compostos de Prata/metabolismo , Animais , Materiais Revestidos Biocompatíveis/síntese química , Materiais Revestidos Biocompatíveis/química , Feminino , Ligantes , Fígado/química , Fígado/metabolismo , Teste de Materiais , Camundongos , Camundongos Nus , Nanopartículas/química , Tamanho da Partícula , Compostos de Prata/química , Tomografia Computadorizada por Raios X
6.
ACS Biomater Sci Eng ; 7(7): 3209-3220, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34160196

RESUMO

Successful treatment of glioblastoma (GBM) is hampered by primary tumor recurrence after surgical resection and poor prognosis, despite adjuvant radiotherapy and chemotherapy. In search of improved outcomes for this disease, quisinostat appeared as a lead compound in drug screening. A delivery system was devised for this drug and to exploit current clinical methodology: an injectable hydrogel, loaded with both the quisinostat drug and radiopaque gold nanoparticles (AuNP) as contrast agent, that can release these payloads as a response to radiation. This hydrogel grants high local drug concentrations, overcoming issues with current standards of care. Significant hydrogel degradation and quisinostat release were observed due to the radiation trigger, providing high in vitro anticancer activity. In vivo, the combination of radiotherapy and the radiation-induced delivery of quisinostat from the hydrogel, successfully inhibited tumor growth in a mice model bearing xenografted human GBM tumors with a total response rate of 67%. Long-term tolerability was observed after intratumoral injection of the quisinostat loaded hydrogel. The AuNP payload enabled precise image-guided radiation delivery and the monitoring of hydrogel degradation using computed tomography (CT). These exciting results highlight this hydrogel as a versatile imageable drug delivery platform that can be activated simultaneously to radiation therapy and potentially offers improved treatment for GBM.


Assuntos
Glioblastoma , Nanopartículas Metálicas , Glioblastoma/diagnóstico por imagem , Ouro , Humanos , Hidrogéis , Recidiva Local de Neoplasia
7.
ACS Biomater Sci Eng ; 7(9): 4027-4047, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-33979137

RESUMO

Hydrogels, water-swollen polymer networks, are being applied to numerous biomedical applications, such as drug delivery and tissue engineering, due to their potential tunable rheologic properties, injectability into tissues, and encapsulation and release of therapeutics. Despite their promise, it is challenging to assess their properties in vivo and crucial information such as hydrogel retention at the site of administration and in situ degradation kinetics are often lacking. To address this, technologies to evaluate and track hydrogels in vivo with various imaging techniques have been developed in recent years, including hydrogels functionalized with contrast generating material that can be imaged with methods such as X-ray computed tomography (CT), magnetic resonance imaging (MRI), optical imaging, and nuclear imaging systems. In this review, we will discuss emerging approaches to label hydrogels for imaging, review the advantages and limitations of these imaging techniques, and highlight examples where such techniques have been implemented in biomedical applications.


Assuntos
Hidrogéis , Engenharia Tecidual , Sistemas de Liberação de Medicamentos , Imagem Óptica , Polímeros
8.
Int J Mol Sci ; 21(21)2020 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-33105692

RESUMO

We describe here the evaluation of the cytotoxic efficacy of two platinum (II) complexes bearing an N-heterocyclic carbene (NHC) ligand, a pyridine ligand and bromide or iodide ligands on a panel of human metastatic cutaneous melanoma cell lines representing different genetic subsets including BRAF-inhibitor-resistant cell lines, namely A375, SK-MEL-28, MeWo, HMCB, A375-R, SK-MEL-5-R and 501MEL-R. Cisplatin and dacarbazine were also studied for comparison purposes. Remarkably, the iodine-labelled Pt-NHC complex strongly inhibited proliferation of all tested melanoma cells after 1-h exposure, likely due to its rapid uptake by melanoma cells. The mechanism of this inhibitory activity involves the formation of DNA double-strand breaks and apoptosis. Considering the intrinsic chemoresistance of metastatic melanoma cells of current systemic treatments, these findings are promising and could give research opportunities in the future to improve the prognosis of patients suffering from unresectable metastatic melanoma that are not eligible or that do not respond to the most effective drugs available to date, namely BRAF inhibitors and the anti-PD-1 monoclonal antibody (mAb).


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Melanoma/tratamento farmacológico , Compostos Organoplatínicos/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Antineoplásicos/química , Antineoplásicos/farmacocinética , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Dano ao DNA , Resistencia a Medicamentos Antineoplásicos/genética , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos/química , Compostos Heterocíclicos/farmacologia , Humanos , Melanoma/patologia , Metano/análogos & derivados , Metano/química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacocinética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Neoplasias Cutâneas/patologia , Proteína bcl-X/metabolismo , Melanoma Maligno Cutâneo
9.
Dalton Trans ; 49(33): 11451-11466, 2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32776052

RESUMO

In this perspective, we discuss iron-complexes as drug candidates that are promising alternatives to conventional platinum-based chemotherapies owing to their broad range of reactivities and to the targeting of different biological systems. Breakthroughs in the comprehension of iron complexes' structure-activity relationship contributed to the clarification of their metabolization pathways, sub-cellular localization and influence on iron homeostasis, while enlightening the primary molecular targets of theses likely multi-target metallodrugs. Both the antiproliferative activity and elevated safety index observed among the family of iron complexes showed encouraging results as per their therapeutic potential and selectivity also with the aim of reducing chemotherapy side-effects, and facilitated more pre-clinical investigations. The purpose of this perspective is to summarize the recent advances that contributed in unveiling the intricate relationships between the structural modifications on iron-complexes and their reactivity, cellular trafficking and global mechanisms of action to broaden their use as anticancer drugs and advance to clinical evaluation.


Assuntos
Antineoplásicos/química , Complexos de Coordenação/química , Ferro/química , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Humanos , Ligantes , Terapia de Alvo Molecular , Piridinas/química , Salicilatos/química , Relação Estrutura-Atividade
10.
ACS Nano ; 14(8): 10187-10197, 2020 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-32692538

RESUMO

Computed tomography (CT) is an X-ray-based medical imaging technique commonly used for noninvasive gastrointestinal tract (GIT) imaging. Iodine- and barium-based CT contrast agents are used in the clinic for GIT imaging; however, inflammatory bowel disease (IBD) imaging is challenging since iodinated and barium-based CT agents are not specific for sites of inflammation. Cerium oxide nanoparticles (CeNP) can produce strong X-ray attenuation due to cerium's k-edge at 40.4 keV but have not yet been explored for CT imaging. In addition, we hypothesized that the use of dextran as a coating material on cerium oxide nanoparticles would encourage accumulation in IBD inflammation sites in a similar fashion to other inflammatory diseases. In this study, therefore, we sought to develop a CT contrast agent, i.e., dextran-coated cerium oxide nanoparticles (Dex-CeNP) for GIT imaging with IBD. We synthesized Dex-CeNP, characterized them using various analytical tools, and examined their in vitro biocompatibility, CT contrast generation, and protective effect against oxidative stress. In vivo CT imaging was done with both healthy mice and a dextran sodium sulfate induced colitis mouse model. Dex-CeNP's CT contrast generation and accumulation in inflammation sites were compared with iopamidol, an FDA approved CT contrast agent. Dex-CeNP was found to be protective against oxidative damage. Dex-CeNP produced strong CT contrast and accumulated in the colitis area of large intestines. In addition, >97% of oral doses were cleared from the body within 24 h. Therefore, Dex-CeNP can be used as a potential CT contrast agent for imaging GIT with IBD while protecting against oxidative damage.


Assuntos
Cério , Colite , Doenças Inflamatórias Intestinais , Nanopartículas , Animais , Colite/induzido quimicamente , Colite/diagnóstico por imagem , Meios de Contraste , Dextranos , Doenças Inflamatórias Intestinais/diagnóstico por imagem , Doenças Inflamatórias Intestinais/tratamento farmacológico , Camundongos
11.
Molecules ; 25(14)2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32660104

RESUMO

A series of octahedral platinum(IV) complexes functionalized with both N-heterocyclic carbene (NHC) ligands were synthesized according to a straightforward procedure and characterized. The coordination sphere around the metal was varied, investigating the influence of the substituted NHC and the amine ligand in trans position to the NHC. The influence of those structural variations on the chemical shift of the platinum center were evaluated by 195Pt NMR. This spectroscopy provided more insights on the impact of the structural changes on the electronic density at the platinum center. Investigation of the in vitro cytotoxicities of representative complexes were carried on three cancer cell lines and showed IC50 values down to the low micromolar range that compare favorably with the benchmark cisplatin or their platinum(II) counterparts bearing NHC ligands.


Assuntos
Antineoplásicos , Metano/análogos & derivados , Neoplasias/tratamento farmacológico , Compostos Organoplatínicos , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Células HCT116 , Humanos , Metano/química , Ressonância Magnética Nuclear Biomolecular , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Compostos Organoplatínicos/farmacologia , Células PC-3
12.
J Am Chem Soc ; 142(17): 7783-7794, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-32271558

RESUMO

Gold is a highly useful nanomaterial for many clinical applications, but its poor biodegradability can impair long-term physiological clearance. Large gold nanoparticles (∼10-200 nm), such as those required for long blood circulation times and appreciable tumor localization, often exhibit little to no dissolution and excretion. This can be improved by incorporating small gold particles within a larger entity, but elimination may still be protracted due to incomplete dispersion of gold. The present study describes a novel gold nanoparticle formulation capable of environmentally triggered decomposition. Ultrasmall gold nanoparticles are coated with thiolated dextran, and hydrophobic acetal groups are installed through direct covalent modification of the dextran. This hydrophobic exterior allows gold to be densely packed within ∼150 nm polymeric micelles. Upon exposure to an acidic environment, the acetal groups are cleaved and the gold nanoparticles become highly water-soluble, leading to destabilization of the micelle. Within 24 h, the ultrasmall water-soluble gold particles are released from the micelle and readily dispersed. Micelle degradation and gold nanoparticle dispersion was imaged in cultured macrophages, and micelle-treated mice displayed progressive physiological clearance of gold, with >85% elimination from the liver over three months. These particles present a novel nanomaterial formulation and address a critical unresolved barrier for clinical translation of gold nanoparticles.


Assuntos
Ouro/química , Interações Hidrofóbicas e Hidrofílicas , Nanopartículas Metálicas/química , Humanos , Concentração de Íons de Hidrogênio
13.
Bioconjug Chem ; 31(2): 303-314, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-31682405

RESUMO

Gold nanoparticles (AuNP) have been extensively developed as contrast agents, theranostic platforms, and probes for molecular imaging. This popularity has yielded a large number of AuNP designs that vary in size, shape, surface functionalization, and assembly, to match very closely the requirements for various imaging applications. Hence, AuNP based probes for molecular imaging allow the use of computed tomography (CT), fluorescence, and other forms of optical imaging, photoacoustic imaging (PAI), and magnetic resonance imaging (MRI), and other newer techniques. The unique physicochemical properties, biocompatibility, and highly developed chemistry of AuNP have facilitated breakthroughs in molecular imaging that allow the detection and imaging of physiological processes with high sensitivity and spatial resolution. In this Review, we summarize the recent advances in molecular imaging achieved using novel AuNP structures, cell tracking using AuNP, targeted AuNP for cancer imaging, and activatable AuNP probes. Finally, the perspectives and current limitations for the clinical translation of AuNP based probes are discussed.


Assuntos
Ouro/análise , Nanopartículas Metálicas/análise , Imagem Molecular/métodos , Imagem Óptica/métodos , Animais , Rastreamento de Células/instrumentação , Rastreamento de Células/métodos , Humanos , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Imagem Molecular/instrumentação , Imagem Óptica/instrumentação , Técnicas Fotoacústicas/instrumentação , Técnicas Fotoacústicas/métodos , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos
14.
Int J Mol Sci ; 20(17)2019 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-31461928

RESUMO

A platinum (II) complex stabilized by a pyridine and an N-heterocyclic carbene ligand featuring an anthracenyl moiety was prepared. The compound was fully characterized and its molecular structure was determined by single-crystal X-ray diffraction. The compound demonstrated high in vitro antiproliferative activities against cancer cell lines with IC50 ranging from 10 to 80 nM. The presence of the anthracenyl moiety on the N-heterocyclic carbene (NHC) Pt complex was used as a luminescent tag to probe the metal interaction with the nucleobases of the DNA through a pyridine-nucleobase ligand exchange. Such interaction of the platinum complex with DNA was corroborated by optical tweezers techniques and liquid phase atomic force microscopy (AFM). The results revealed a two-state interaction between the platinum complex and the DNA strands. This two-state behavior was quantified from the different experiments due to contour length variations. At 24 h incubation, the stretching curves revealed multiple structural breakages, and AFM imaging revealed a highly compact and dense structure of platinum complexes bridging the DNA strands.


Assuntos
Antineoplásicos/química , DNA/química , Compostos Organoplatínicos/química , Antracenos/química , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , DNA/metabolismo , Células HCT116 , Humanos , Células MCF-7 , Pinças Ópticas , Compostos Organoplatínicos/farmacologia , Células PC-3
15.
ACS Appl Mater Interfaces ; 11(32): 28648-28656, 2019 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-31321973

RESUMO

Overproduction of reactive oxygen species (ROS) is often related to inflammation or cancer and can cause tissue damage. Probes that have been previously reported to image ROS typically rely on imaging techniques that have low depth penetration in tissue, thus limiting their use to superficial disease sites. We report herein a novel formulation of hybrid nanogels loaded with gold nanoparticles (AuNP) to produce contrast for computed tomography (CT) and photoacoustics (PA), both being deep-tissue imaging techniques. The polyphosphazene polymer has been designed to selectively degrade upon ROS exposure, which triggers a switch-off of the PA signal by AuNP disassembly. This ROS-triggered degradation of the nanoprobes leads to a significant decrease in the PA contrast, thus allowing ratiometric ROS imaging by comparing the PA to CT signal. Furthermore, ROS imaging using these nanoprobes was applied to an in vitro model of inflammation, that is, LPS-stimulated macrophages, where ROS-triggered disassembly of the nanoprobe was confirmed via reduction of the PA signal. In summary, these hybrid nanoprobes are a novel responsive imaging agent that have the potential to image ROS overproduction by comparing PA to CT contrast.


Assuntos
Meios de Contraste , Ouro , Nanopartículas Metálicas/química , Imagem Multimodal , Compostos Organofosforados , Técnicas Fotoacústicas , Polímeros , Espécies Reativas de Oxigênio/análise , Tomografia Computadorizada por Raios X , Animais , Meios de Contraste/química , Meios de Contraste/farmacologia , Ouro/química , Ouro/farmacologia , Células Hep G2 , Humanos , Camundongos , Compostos Organofosforados/química , Compostos Organofosforados/farmacologia , Polímeros/química , Polímeros/farmacologia , Células RAW 264.7
16.
Chem Mater ; 31(19): 7845-7854, 2019 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33005070

RESUMO

Significant effort has been focused on developing renally-clearable nanoparticle agents since efficient renal clearance is important for eventual clinical translation. Silver sulfide nanoparticles (Ag2S-NP) have recently been identified as contrast agents for dual energy mammography, computed tomography (CT) and fluorescence imaging and probes for drug delivery and photothermal therapy with good biocompatibility. However, most Ag2S-NP reported to date are not renally excretable and are observed in vivo to accumulate and remain in the reticuloendothelial system (RES) organs, i.e. liver and spleen, for a long time, which could negatively impact their likelihood for translation. Herein, we present renally-clearable, 3.1 nm Ag2S-NP with 85% of the injected dose (ID) being excreted within 24 hours of intravenous injection, which is amongst the best clearance of similarly sized nanoparticles reported thus far (mostly between 20-75% of ID). The urinary excretion and low RES accumulation of these nanoparticles in mice were indicated by in vivo CT imaging and biodistribution analysis. In summary, these ultrasmall Ag2S-NP can be effectively eliminated via urine and have high translational potential for various biomedical applications.

17.
Int J Mol Sci ; 19(11)2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30400637

RESUMO

The high interest in N-Heterocyclic platinum carbene complexes in cancer research stems from their high cytotoxicity to human cancer cells, their stability, as well as their ease of functionalization. However, the development of these new molecules as anticancer agents still faces multiple challenges, in particular solubility in aqueous media. Here, we synthesized platinum-NHC bioconjugates that combine water-solubility and cytotoxicity by using polyethyleneimine as polymer carrier. We showed on 8 different types of cells that the activity of these conjugates is modulated by the size of the polymer and the overall density of metal ions onto polymer chains. Using HCT116 cells, the conjugates displayed an effective activity after only 45 min of exposure in vitro correlated with a quick uptake by the cells as shown by the use of various fluorescent-tagged derivatives.


Assuntos
Portadores de Fármacos/química , Compostos Organoplatínicos/farmacologia , Polietilenoimina/farmacologia , Morte Celular/efeitos dos fármacos , Endocitose , Fluorescência , Corantes Fluorescentes/química , Células HCT116 , Humanos , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/química , Polietilenoimina/síntese química , Polietilenoimina/química
18.
Dalton Trans ; 47(33): 11491-11502, 2018 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-30074048

RESUMO

Platinum(iv) complexes stabilized by N-heterocyclic carbene ligands of the type [(NHC)PtX4L], where L is a neutral nitrogen-based ligand and X is a halide anion (Br, Cl), were prepared by using straightforward and high-yielding synthetic routes and the scope was extended to amphiphilic derivatives. The complexes were fully characterized and the molecular structure of the three derivatives was determined by single-crystal X-ray analyses. The complexes demonstrated in vitro antiproliferative activities against several cancer cell lines. In particular, a representative Pt(iv) complex, namely, [(NHC)PtCl4(pyridine)], displayed efficient antiproliferative activity against cisplatin-resistant cancer cells. These results were correlated with their physicochemical properties, namely, solubility, stability and redox behavior by means of UV-vis spectroscopy, NMR or cyclic voltammetry, whereas in DMSO/water, these Pt(iv) complexes transform into biologically less active cis[(NHC)PtX2(DMSO)] species, in the presence of a bioreductant such as glutathione which quickly leads to the formation of a biologically active trans[(NHC)PtX2L] complex. Overall, these data show that NHC-Pt(iv) compounds are good candidates as anti-cancer prodrugs.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Compostos Heterocíclicos/química , Metano/análogos & derivados , Compostos Organoplatínicos/síntese química , Compostos Organoplatínicos/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Técnicas de Química Sintética , Dimetil Sulfóxido/química , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Estabilidade de Medicamentos , Glutationa/metabolismo , Humanos , Metano/química , Modelos Moleculares , Conformação Molecular , Compostos Organoplatínicos/química , Oxirredução , Água/química
19.
Dalton Trans ; 45(34): 13347-60, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27461718

RESUMO

An asymmetric heterotopic ligand (S-N(Me)CP) containing a central bicyclic, expanded-ring NHC with one pyridyl and one phosphine exo-substituent has been synthesised and its coordination chemistry with selected late transition metals investigated. The amidinium precursor [S-N(Me)CHP]PF6 shows variable coordination modes with Ag(i), Cu(i) and Au(i) depending on the L : M ratio. The reaction of two mols of [S-N(Me)CHP]PF6 with [Cu(MeCN)4]BF4, AgBF4 or Au(THT)Cl gives the bis-ligand complexes [Cu(κ-P-N(Me)CHP)2(CH3CN)2]BF4·(PF6)2, 1, and [M(κ-P-N(Me)CHP)2]X·(PF6)2 (3: M = Ag, X = BF4; 6: M = Au, X = Cl) respectively. The 1 : 1 reaction of [S-N(Me)CHP]PF6 with AgOTf gave the head-to-tail dimer H,T-[Ag2(µ-N,P-N(Me)CHP)2(µ-OTf)2](PF6)2, 2, whereas the analogous reaction with Au(THT)Cl gave monomeric [Au(κ-P-N(Me)CHP)Cl]PF6, 5. Complex 2 was converted to H,T-[Ag2(µ-C,P-N(Me)CP)2](PF6)2, 4, upon addition of base, while 6 gave [Au(κ-C-N(Me)CP)2]Cl, 8, when treated likewise. Reaction of [S-N(Me)CHP]PF6 with Ni(1,5-COD)2 gave the oxidative addition/insertion product [Ni(κ(3)-N,C,P-N(Me)CP)(η(3)-C8H13)]PF6, 9, which converted to [Ni(κ(3)-N,C,P-N(Me)CP)Cl]PF6, 10, upon exposure of a CHCl3 solution to air. Complex 10 showed conformational isomerism that was also present in [Rh(κ(3)-N,C,P-N(Me)CP)(CO)]PF6, 14, prepared from the precursor complex [Rh(κ-P-N(Me)CHP)(acac)(CO)]PF6, 13, upon heating in C6H5Cl. [Pt(κ(3)-N,C,P-N(Me)CP)(Cl)]PF6, 12, derived from trans-[Pt(κ-P-N(Me)CHP)2(Cl)2](PF6)2, 11, was isolated as a single conformer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...