Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 12551, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467440

RESUMO

The pectin methylesterase action is usually studied in a homogeneous aqueous medium in the presence of a large excess of soluble substrate and water. However in the cell wall, the water content is much lower, the substrate is cross-linked with itself or with other polymers, and the enzyme has to diffuse through the solid matrix before catalysing the linkage breakdown. As plant primary cell walls can be considered as cellulose-reinforced hydrogels, this study investigated the diffusion of a fungal pectin methylesterase in pectin/cellulose gels used as cell wall-mimicking matrix to understand the impact of this matrix and its (micro) structure on the enzyme's diffusion within it. The enzyme mobility was followed by synchrotron microscopy thanks to its auto-fluorescence after deep-UV excitation. Time-lapse imaging and quantification of intensity signal by image analysis revealed that the diffusion of the enzyme was impacted by at least two criteria: (i) only the active enzyme was able to diffuse, showing that the mobility was related to the catalytic ability, and (ii) the diffusion was improved by the presence of cellulose in the gel.

2.
Plant Sci ; 276: 199-207, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348319

RESUMO

Important biological, nutritional and technological roles are attributed to cell wall polymers from cereal grains. The composition of cell walls in dry wheat grain has been well studied, however less is known about cell wall deposition and modification in the grain outer layers during grain development. In this study, the composition of cell walls in the outer layers of the wheat grain (Triticum aestivum Recital cultivar) was investigated during grain development, with a focus on cell wall phenolics. We discovered that lignification of outer layers begins earlier than previously reported and long before the grain reaches its final size. Cell wall feruloylation increased in development. However, in the late stages, the amount of ferulate releasable by mild alkaline hydrolysis was reduced as well as the yield of lignin-derived thioacidolysis monomers. These reductions indicate that new ferulate-mediated cross-linkages of cell wall polymers appeared as well as new resistant interunit bonds in lignins. The formation of these additional linkages more specifically occurred in the outer pericarp. Our results raised the possibility that stiffening of cell walls occur at late development stages in the outer pericarp and might contribute to the restriction of the grain radial growth.


Assuntos
Ácidos Cumáricos/química , Lignina/química , Triticum/crescimento & desenvolvimento , Parede Celular/química , Grão Comestível/química , Grão Comestível/crescimento & desenvolvimento , Hidrólise , Fenóis/química , Triticum/química , Triticum/citologia
3.
Front Plant Sci ; 9: 200, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29515611

RESUMO

Tracking enzyme localization and following the local biochemical modification of the substrate should help explain the recalcitrance of lignocellulosic plant cell walls to enzymatic degradation. Time-lapse studies using conventional imaging require enzyme labeling and following the biochemical modifications of biopolymers found in plant cell walls, which cannot be easily achieved. In the present work, synchrotron facilities have been used to image the enzymatic degradation of lignocellulosic biomass without labeling the enzyme or the cell walls. Multichannel autofluorescence imaging of the protein and phenolic compounds after excitation at 275 nm highlighted the presence or absence of enzymes on cell walls and made it possible to track them during the reaction. Image analysis was used to quantify the fluorescence intensity variations. Consistent variations in the enzyme concentration were found locally for cell cavities and their surrounding cell walls. Microfluidic FT-IR microspectroscopy allowed for time-lapse tracking of local changes in the polysaccharides in cell walls during degradation. Hemicellulose degradation was found to occur prior to cellulose degradation using a Celluclast® preparation. Combining the fluorescence and FT-IR information yielded the conclusion that enzymes did not bind to lignified cell walls, which were consequently not degraded. Fluorescence multiscale imaging and FT-IR microspectroscopy showed an unexpected variability both in the initial biochemical composition and the degradation pattern, highlighting micro-domains in the cell wall of a given cell. Fluorescence intensity quantification showed that the enzymes were not evenly distributed, and their amount increased progressively on degradable cell walls. During degradation, adjacent cells were separated and the cell wall fragmented until complete degradation.

4.
Plant Sci ; 257: 48-62, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28224918

RESUMO

Tomato fruit texture depends on histology and cell wall architecture, both under genetic and developmental controls. If ripening related cell wall modifications have been well documented with regard to softening, little is known about cell wall construction during early fruit development. Identification of key events and their kinetics with regard to tissue architecture and cell wall development can provide new insights on early phases of texture elaboration. In this study, changes in pectin and hemicellulose chemical characteristics and location were investigated in the pericarp tissue of tomato (Solanum lycopersicon var Levovil) at four stages of development (7, 14 and 21day after anthesis (DPA) and mature green stages). Analysis of cell wall composition and polysaccharide structure revealed that both are continuously modified during fruit development. At early stages, the relative high rhamnose content in cell walls indicates a high synthesis of rhamnogalacturonan I next to homogalacturonan. Fine tuning of rhamnogalacturonan I side chains appears to occur from the cell expansion phase until prior to the mature green stage. Cell wall polysaccharide remodelling also concerns xyloglucans and (galacto)glucomannans, the major hemicelluloses in tomato cell walls. In situ localization of cell wall polysaccharides in pericarp tissue revealed non-ramified RG-I rich pectin and XyG at cellular junctions and in the middle lamella of young fruit. Blocks of non-methyl esterified homogalacturonan are detected as soon as 14 DPA in the mesocarp and remained restricted to cell corner and middle lamella whatever the stages. These results point to new questions about the role of pectin RGI and XyG in cell adhesion and its maintenance during cell expansion.


Assuntos
Frutas/anatomia & histologia , Frutas/crescimento & desenvolvimento , Pectinas/metabolismo , Polissacarídeos/metabolismo , Solanum lycopersicum/anatomia & histologia , Solanum lycopersicum/metabolismo , Parede Celular/metabolismo , Epitopos/metabolismo , Imunofluorescência , Frutas/citologia , Frutas/ultraestrutura , Glucanos/metabolismo , Solanum lycopersicum/citologia , Tamanho do Órgão , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Xilanos/metabolismo
5.
Front Plant Sci ; 7: 1476, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27746801

RESUMO

Cell walls are comprised of networks of entangled polymers that differ considerably between species, tissues and developmental stages. The cell walls of grasses, a family that encompasses major crops, contain specific polysaccharide structures such as xylans substituted with feruloylated arabinose residues. Ferulic acid is involved in the grass cell wall assembly by mediating linkages between xylan chains and between xylans and lignins. Ferulic acid contributes to the physical properties of cell walls, it is a hindrance to cell wall degradability (thus biomass conversion and silage digestibility) and may contribute to pest resistance. Many steps leading to the formation of grass xylans and their cross-linkages remain elusive. One explanation might originate from the fact that many studies were performed on lignified stem tissues. Pathways leading to lignins and feruloylated xylans share several steps, and lignin may impede the release and thus the quantification of ferulic acid. To overcome these difficulties, we used the pericarp of the maize B73 line as a model to study feruloylated xylan synthesis and crosslinking. Using Fourier-transform infra-red spectroscopy and biochemical analyses, we show that this tissue has a low lignin content and is composed of approximately 50% heteroxylans and approximately 5% ferulic acid. Our study shows that, to date, maize pericarp contains the highest level of ferulic acid reported in plant tissue. The detection of feruloylated xylans with a polyclonal antibody shows that the occurrence of these polysaccharides is developmentally regulated in maize grain. We used the genomic tools publicly available for the B73 line to study the expression of genes within families involved or suggested to be involved in the phenylpropanoid pathway, xylan formation, feruloylation and their oxidative crosslinking. Our analysis supports the hypothesis that the feruloylated moiety of xylans originated from feruloylCoA and is transferred by a member of the BAHD acyltransferase family. We propose candidate genes for functional characterization that could subsequently be targeted for grass crop breeding.

6.
Food Chem ; 213: 402-409, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27451197

RESUMO

Retting is an important step in traditional cassava processing that involves tissue softening of the roots to transform the cassava into flour and various food products. The tissue softening that occurs during retting was attributed to the degradation of cell wall pectins through the action of pectin-methylesterase and pectate-lyase that possibly originated from a microbial source or the cassava plant itself. Changes in cell wall composition were investigated during retting using chemical analysis, specific glycanase degradation and immuno-labelling of cell wall polysaccharides. Pectic 1,4-ß-d-galactan was the main cell wall polysaccharide affected during the retting of cassava roots. This result suggested that better control of pectic galactan degradation and a better understanding of the degradation mechanism by endogenous endo-galactanase and/or exogenous microbial enzymes might contribute to improve the texture properties of cassava products.


Assuntos
Parede Celular/química , Manihot/química , Pectinas/química , Raízes de Plantas/química , Polissacarídeos/química
7.
J Exp Bot ; 67(1): 227-37, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26433202

RESUMO

Cereal crop by-products are a promising source of renewable raw material for the production of biofuel from lignocellulose. However, their enzymatic conversion to fermentable sugars is detrimentally affected by lignins. Here the characterization of the Brachypodium Bd5139 mutant provided with a single nucleotide mutation in the caffeic acid O-methyltransferase BdCOMT6 gene is reported. This BdCOMT6-deficient mutant displayed a moderately altered lignification in mature stems. The lignin-related BdCOMT6 gene was also found to be expressed in grains, and the alterations of Bd5139 grain lignins were found to mirror nicely those evidenced in stem lignins. The Bd5139 grains displayed similar size and composition to the control. Complementation experiments carried out by introducing the mutated gene into the AtCOMT1-deficient Arabidopsis mutant demonstrated that the mutated BdCOMT6 protein was still functional. Such a moderate down-regulation of lignin-related COMT enzyme reduced the straw recalcitrance to saccharification, without compromising the vegetative or reproductive development of the plant.


Assuntos
Brachypodium/fisiologia , Lignina/genética , Metiltransferases/genética , Proteínas de Plantas/genética , Biocombustíveis/análise , Brachypodium/genética , Parede Celular/química , Grão Comestível/fisiologia , Lignina/metabolismo , Metiltransferases/metabolismo , Mutação , Fenóis/metabolismo , Proteínas de Plantas/metabolismo , Caules de Planta/fisiologia
8.
Plant Cell Physiol ; 56(11): 2181-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26384432

RESUMO

Rhamnogalacturonan I (RGI) is a pectic polysaccharide composed of a backbone of alternating rhamnose and galacturonic acid residues with side chains containing galactose and/or arabinose residues. The structure of these side chains and the degree of substitution of rhamnose residues are extremely variable and depend on species, organs, cell types and developmental stages. Deciphering RGI function requires extending the current set of monoclonal antibodies (mAbs) directed to this polymer. Here, we describe the generation of a new mAb that recognizes a heterogeneous subdomain of RGI. The mAb, INRA-AGI-1, was produced by immunization of mice with RGI oligosaccharides isolated from potato tubers. These oligomers consisted of highly branched RGI backbones substituted with short side chains. INRA-AGI-1 bound specifically to RGI isolated from galactan-rich cell walls and displayed no binding to other pectic domains. In order to identify its RGI-related epitope, potato RGI oligosaccharides were fractionated by anion-exchange chromatography. Antibody recognition was assessed for each chromatographic fraction. INRA-AGI-1 recognizes a linear chain of (1→4)-linked galactose and (1→5)-linked arabinose residues. By combining the use of INRA-AGI-1 with LM5, LM6 and INRA-RU1 mAbs and enzymatic pre-treatments, evidence is presented of spatial differences in RGI motif distribution within individual cell walls of potato tubers and carrot roots. These observations raise questions about the biosynthesis and assembly of pectin structural domains and their integration and remodeling in cell walls.


Assuntos
Parede Celular/química , Galactanos/imunologia , Pectinas/química , Animais , Daucus carota/química , Epitopos , Galactanos/análise , Camundongos , Raízes de Plantas/química , Raízes de Plantas/citologia , Polissacarídeos/análise , Solanum tuberosum/química
9.
Carbohydr Polym ; 122: 248-54, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25817666

RESUMO

Composite films made with Arabinoxylans (AXs) (with high, middle and low level of substitution by arabinose) and (1 → 3)(1 → 4)-ß-D-glucans (BGs) extracted from cereal cell walls have been prepared and analyzed using microscopy (SEM and LSCFM), DSC, mechanical tests and TD-NMR spectroscopy. The objectives were to correlate molecular and physico-chemical properties of films with mechanical and hydration properties of wheat cell walls. A phase separation phenomenon was observed for films made with highly substituted AXs and BGs at a ratio AX/BG of 60/40. This phase separation was correlated with lower dipolar interactions between polysaccharide chains and a decrease of ultimate strain and stress of films. Highly substituted AX and BG composite films exhibited very weak mechanical properties in agreement with weaker interactions between the polymer chains. This effect was supported by NMR results showing that interactions between AXs and BGs decreased with increased substitution of AXs in composite films. Lower dipolar interactions between polysaccharides favored the water mobility in relation with a higher specific surface area of polysaccharides in films but also higher distances between polysaccharide chains so larger nanopores in composite films made within highly substituted AXs. These multiscale characterizations agreed with the structural changes observed in wheat grain during its development.


Assuntos
Parede Celular/química , Nanocompostos/química , Triticum/química , Água/química , Xilanos/química , beta-Glucanas/química , Espectroscopia de Ressonância Magnética
10.
J Exp Bot ; 66(9): 2649-58, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25769308

RESUMO

Cereal grain outer layers fulfil essential functions for the developing seed such as supplying energy and providing protection. In the food industry, the grain outer layers called 'the bran' is valuable since it is rich in dietary fibre and other beneficial nutriments. The outer layers comprise several tissues with a high content in cell wall material. The cell wall composition of the grain peripheral tissues was investigated with specific probes at a stage of active cell wall synthesis. Considerable wall diversity between cell types was revealed. To identify the cellular machinery involved in cell wall synthesis, a subcellular proteomic approach was used targeting the Golgi apparatus where most cell wall polysaccharides are synthesized. The tissues were dissected into outer pericarp and intermediate layers where 822 and 1304 proteins were identified respectively. Many carbohydrate-active enzymes were revealed: some in the two peripheral grain fractions, others only in one tissue. Several protein families specific to one fraction and with characterized homologs in other species might be related to the specific detection of a polysaccharide in a particular cell layer. This report provides new information on grain cell walls and its biosynthesis in the valuable outer tissues, which are poorly studied so far. A better understanding of the mechanisms controlling cell wall composition could help to improve several quality traits of cereal products (e.g. dietary fibre content, biomass conversion to biofuel).


Assuntos
Parede Celular/metabolismo , Fibras na Dieta/metabolismo , Triticum/metabolismo , Parede Celular/enzimologia , Proteínas de Plantas/análise , Proteínas de Plantas/metabolismo , Proteômica , Triticum/enzimologia
11.
Ann Bot ; 115(2): 187-99, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25452248

RESUMO

BACKGROUND AND AIMS: The efficiency and safety functions of xylem hydraulics are strongly dependent on the pits that connect the xylem vessels. However, little is known about their biochemical composition and thus about their hydraulic properties. In this study, the distribution of the epitopes of different wall components (cellulose, hemicelluloses, pectins and lignins) was analysed in intervessel pits of hybrid poplar (Populus tremula × alba). METHODS: Immunogold labelling with transmission electron microscopy was carried out with a set of antibodies raised against different epitopes for each wall polysaccharide type and for lignins. Analyses were performed on both immature and mature vessels. The effect of sap ionic strength on xylem conductance was also tested. KEY RESULTS: In mature vessels, the pit membrane (PM) was composed of crystalline cellulose and lignins. None of the hemicellulose epitopes were found in the PM. Pectin epitopes in mature vessels were highly concentrated in the annulus, a restricted area of the PM, whereas they were initially found in the whole PM in immature vessels. The pit border also showed a specific labelling pattern, with higher cellulose labelling compared with the secondary wall of the vessel. Ion-mediated variation of 24 % was found for hydraulic conductance. CONCLUSIONS: Cellulose microfibrils, lignins and annulus-restricted pectins have different physicochemical properties (rigidity, hydrophobicity, porosity) that have different effects on the hydraulic functions of the PM, and these influence both the hydraulic efficiency and vulnerability to cavitation of the pits, including ion-mediated control of hydraulic conductance. Impregnation of the cellulose microfibrils of the PM with lignins, which have low wettability, may result in lower cavitation pressure for a given pore size and thus help to explain the vulnerability of this species to cavitation.


Assuntos
Biopolímeros/metabolismo , Parede Celular/metabolismo , Polissacarídeos/metabolismo , Populus/metabolismo , Xilema/metabolismo , Parede Celular/ultraestrutura , Microscopia Eletrônica de Transmissão , Populus/genética , Populus/ultraestrutura , Coloração e Rotulagem , Xilema/ultraestrutura
12.
Biomacromolecules ; 16(2): 589-96, 2015 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-25539015

RESUMO

Xyloglucan (XG) is believed to act as a cementing material that contributes to the cross-linking and mechanical properties of the cellulose framework in plant cell walls. XG can adsorb to the cellulose nanocrystal (CNC) surface in vitro in order to simulate this in vivo relationship. The target of our work was to investigate the sorption behavior of tamarind seed XG on CNC extracted from cotton linters at different XG/CNC concentration ratios, that is, different adsorption regimes regarding the XG-CNC complex organization and the enzymatic susceptibility of XG. First, we determined the adsorption isotherm. Second, XG-CNC complexes were enzymatically hydrolyzed using a xyloglucan-specific endoglucanase in order to quantify the different XG fractions involved in binding to CNC and to determine adsorption regimes, that is, presence of loops, tails, and trains. Finally, the architecture of the XG-CNC complex was investigated by transmission electron microscopy imaging of negatively stained XG-CNC suspensions and XG immunolabeled suspensions at different XG/CNC concentration ratios, both before and after xyloglucanase hydrolysis process. This study revealed that an increasing XG/CNC concentration ratio led to a change in the XG binding organization to CNC. At low XG/CNC concentration ratios, almost all XG chains were bound as trains to the CNC surface. In contrast, at increasing XG/CNC concentration ratios, the proportion of loops and tails increases. The organization change induces CNC aggregation to form a cellulose/XG network at low XG/CNC regimes, whereas CNC remains in the form of individual particles at higher XG/CNC regimes. Results are discussed both regarding the biological role of XG in plant cell walls and in the perspective of designing new biobased materials.


Assuntos
Celulase , Celulose/química , Glucanos/química , Nanopartículas/química , Tamarindus/enzimologia , Xilanos/química , Adsorção/fisiologia , Celulase/metabolismo , Celulose/metabolismo , Glucanos/metabolismo , Nanopartículas/metabolismo , Xilanos/metabolismo
13.
J Agric Food Chem ; 62(28): 6650-4, 2014 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-24987926

RESUMO

A histological approach including light microscopy and transmission electron microscopy (TEM) was used to provide accurate information on the localization of condensed tannins in the edible tissues and in the stone of date fruits (Phoenix dactylifera L.). Light microscopy was carried out on fresh tissues after staining by 4-dimethylaminocinnamaldehyde (DMACA) for a specific detection of condensed tannins. Thus, whether under light microscopy or transmission electron microscopy (TEM), results showed that tannins are not located in the epidermis but more deeply in the mesocarp in the vacuole of very large cells. Regarding the stones, tannins are found in a specific cell layer located at 50 µm from the sclereid cells of the testa.


Assuntos
Frutas/química , Microscopia Eletrônica de Transmissão , Microscopia Eletrônica , Phoeniceae/química , Taninos/análise , Frutas/ultraestrutura , Proantocianidinas/análise , Sementes/química , Sementes/ultraestrutura , Tunísia
14.
PLoS One ; 9(2): e89620, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586916

RESUMO

Cell walls are complex structures surrounding plant cells with a composition that varies among species and even within a species between organs, cell types and development stages. For years, cell walls in wheat grains were described as simple walls consisting mostly of arabinoxylans and mixed-linked beta glucans. Proteomic and transcriptomic studies identified enzyme families involved in the synthesis of many more cell wall polysaccharides in the wheat grains. Here we describe the discovery of pectic domains in wheat grain using monoclonal antibodies and enzymatic treatment to degrade the major cell wall polymers. Distinct spatial distributions were observed for rhamnogalacturonan I present in the endosperm and mostly in the aleurone layer and homogalacturonan especially found in the outer layers, and tight developmental regulations were unveiled. We also uncovered a massive deposition of homogalacturonan via large vesicular bodies in the seed coat (testa) beneath a thick cuticle during development. Our findings raise questions about the function of pectin in wheat grain.


Assuntos
Parede Celular/metabolismo , Endosperma/metabolismo , Pectinas/metabolismo , Triticum/metabolismo , Endosperma/citologia , Endosperma/crescimento & desenvolvimento , Especificidade de Órgãos , Triticum/citologia , Triticum/crescimento & desenvolvimento
15.
Planta ; 236(2): 739-51, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22526506

RESUMO

Immunolabeling can be used to locate plant cell wall carbohydrates or other components to specific cell types or to specific regions of the wall. Some antibodies against xylans exist; however, many partly react with the xylan backbone and thus provide limited information on the type of substituents present in various xylans. We have produced a monoclonal antibody which specifically recognizes glucopyranosyl uronic acid (GlcA), or its 4-O-methyl ether (meGlcA), substituents in xylan and has no cross-reactivity with linear or arabinofuranosyl-substituted xylans. The UX1 antibody binds most strongly to (me)GlcA substitutions at the non-reducing ends of xylan chains, but has a low cross-reactivity with internal substitutions as well, at least on oligosaccharides. The antibody labeled plant cell walls from both mono- and dicotyledons, but in most tissues an alkaline pretreatment was needed for antibody binding. The treatment removed acetyl groups from xylan, indicating that the vicinity of glucuronic acid substituents is also acetylated. The novel labeling patterns observed in the xylem of tree species suggested that differences within the cell wall exist both in acetylation degree and in glucuronic acid content.


Assuntos
Anticorpos Monoclonais/biossíntese , Glucuronatos/imunologia , Magnoliopsida/metabolismo , Oligossacarídeos/imunologia , Xilanos/imunologia , Acetilação , Animais , Anticorpos Monoclonais/isolamento & purificação , Especificidade de Anticorpos , Parede Celular/química , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Glucuronatos/química , Glucuronatos/metabolismo , Hibridomas , Imunização , Espectroscopia de Ressonância Magnética , Magnoliopsida/química , Magnoliopsida/ultraestrutura , Camundongos , Microscopia de Fluorescência , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Reprodutibilidade dos Testes , Xilanos/química , Xilanos/metabolismo , Xilema/química , Xilema/metabolismo , Xilema/ultraestrutura
16.
J Exp Bot ; 63(2): 1001-11, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22080980

RESUMO

Wheat kernel texture, a major trait determining the end-use quality of wheat flour, is mainly influenced by puroindolines. These small basic proteins display in vitro lipid binding and antimicrobial properties, but their cellular functions during grain development remain unknown. To gain an insight into their biological function, a comparative proteome analysis of two near-isogenic lines (NILs) of bread wheat Triticum aestivum L. cv. Falcon differing in the presence or absence of the puroindoline-a gene (Pina) and kernel hardness, was performed. Proteomes of the two NILs were compared at four developmental stages of the grain for the metabolic albumin/globulin fraction and the Triton-extracted amphiphilic fraction. Proteome variations showed that, during grain development, folding proteins and stress-related proteins were more abundant in the hard line compared with the soft one. These results, taken together with ultrastructural observations showing that the formation of the protein matrix occurred earlier in the hard line, suggested that a stress response, possibly the unfolded protein response, is induced earlier in the hard NIL than in the soft one leading to earlier endosperm cell death. Quantification of the albumin/globulin fraction and amphiphilic proteins at each developmental stage strengthened this hypothesis as a plateau was revealed from the 500 °Cd stage in the hard NIL whereas synthesis continued in the soft one. These results open new avenues concerning the function of puroindolines which could be involved in the storage protein folding machinery, consequently affecting the development of wheat endosperm and the formation of the protein matrix.


Assuntos
Endosperma/fisiologia , Proteínas de Plantas/metabolismo , Proteoma , Estresse Fisiológico/fisiologia , Triticum/fisiologia , Resposta a Proteínas não Dobradas/fisiologia , Alelos , Morte Celular , Retículo Endoplasmático/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Regulação da Expressão Gênica de Plantas/fisiologia , Genótipo , Dureza , Estresse Oxidativo/fisiologia , Fenótipo , Proteínas de Plantas/genética , Proteínas de Armazenamento de Sementes/genética , Proteínas de Armazenamento de Sementes/metabolismo , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/fisiologia , Sementes/ultraestrutura , Fatores de Tempo , Triticum/genética , Triticum/crescimento & desenvolvimento , Triticum/ultraestrutura
17.
J Exp Bot ; 62(3): 1001-15, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21062963

RESUMO

The wild grass Brachypodium distachyon has been proposed as an alternative model species for temperate cereals. The present paper reports on the characterization of B. distachyon grain, placing emphasis on endosperm cell walls. Brachypodium distachyon is notable for its high cell wall polysaccharide content that accounts for ∼52% (w/w) of the endosperm in comparison with 2-7% (w/w) in other cereals. Starch, the typical storage polysaccharide, is low [<10% (w/w)] in the endosperm where the main polysaccharide is (1-3) (1-4)-ß-glucan [40% (w/w) of the endosperm], which in all likelihood plays a role as a storage compound. In addition to (1-3) (1-4)-ß-glucan, endosperm cells contain cellulose and xylan in significant amounts. Interestingly, the ratio of ferulic acid to arabinoxylan is higher in B. distachyon grain than in other investigated cereals. Feruloylated arabinoxylan is mainly found in the middle lamella and cell junction zones of the storage endosperm, suggesting a potential role in cell-cell adhesion. The present results indicate that B. distachyon grains contain all the cell wall polysaccharides encountered in other cereal grains. Thus, due to its fully sequenced genome, its short life cycle, and the genetic tools available for mutagenesis/transformation, B. distachyon is a good model to investigate cell wall polysaccharide synthesis and function in cereal grains.


Assuntos
Brachypodium/anatomia & histologia , Parede Celular/ultraestrutura , Endosperma/anatomia & histologia , Brachypodium/genética , Brachypodium/metabolismo , Brachypodium/ultraestrutura , Parede Celular/genética , Parede Celular/metabolismo , Grão Comestível/anatomia & histologia , Grão Comestível/genética , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/metabolismo , Endosperma/ultraestrutura , Microscopia Eletrônica de Transmissão , Modelos Biológicos , Polissacarídeos/metabolismo
18.
Ann Bot ; 105(2): 265-76, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19952012

RESUMO

BACKGROUND AND AIMS: The cellular structure of fleshy fruits is of interest to study fruit shape, size, mechanical behaviour or sensory texture. The cellular structure is usually not observed in the whole fruit but, instead, in a sample of limited size and volume. It is therefore difficult to extend measurements to the whole fruit and/or to a specific genotype, or to describe the cellular structure heterogeneity within the fruit. METHODS: An integrated method is presented to describe the cellular structure of the whole fruit from partial three-dimensional (3D) observations, involving the following steps: (1) fruit sampling, (2) 3D image acquisition and processing and (3) measurement and estimation of relevant 3D morphological parameters. This method was applied to characterize DR12 mutant and wild-type tomatoes (Solanum lycopersicum). KEY RESULTS: The cellular structure was described using the total volume of the pericarp, the surface area of the cell walls and the ratio of cell-wall surface area to pericarp volume, referred to as the cell-wall surface density. The heterogeneity of cellular structure within the fruit was investigated by estimating variations in the cell-wall surface density with distance to the epidermis. CONCLUSIONS: The DR12 mutant presents a greater pericarp volume and an increase of cell-wall surface density under the epidermis.


Assuntos
Parede Celular/metabolismo , Frutas/citologia , Microscopia Confocal , Plantas Geneticamente Modificadas/citologia , Solanum lycopersicum/citologia , Frutas/genética , Solanum lycopersicum/genética , Modelos Biológicos , Plantas Geneticamente Modificadas/genética
19.
Plant J ; 60(3): 499-508, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19619161

RESUMO

The GDP-D-mannose 3,5-epimerase (GME, EC 5.1.3.18), which converts GDP-d-mannose to GDP-l-galactose, is generally considered to be a central enzyme of the major ascorbate biosynthesis pathway in higher plants, but experimental evidence for its role in planta is lacking. Using transgenic tomato lines that were RNAi-silenced for GME, we confirmed that GME does indeed play a key role in the regulation of ascorbate biosynthesis in plants. In addition, the transgenic tomato lines exhibited growth defects affecting both cell division and cell expansion. A further remarkable feature of the transgenic plants was their fragility and loss of fruit firmness. Analysis of the cell-wall composition of leaves and developing fruit revealed that the cell-wall monosaccharide content was altered in the transgenic lines, especially those directly linked to GME activity, such as mannose and galactose. In agreement with this, immunocytochemical analyses showed an increase of mannan labelling in stem and fruit walls and of rhamnogalacturonan labelling in the stem alone. The results of MALDI-TOF fingerprinting of mannanase cleavage products of the cell wall suggested synthesis of specific mannan structures with modified degrees of substitution by acetate in the transgenic lines. When considered together, these findings indicate an intimate linkage between ascorbate and non-cellulosic cell-wall polysaccharide biosynthesis in plants, a fact that helps to explain the common factors in seemingly unrelated traits such as fruit firmness and ascorbate content.


Assuntos
Ácido Ascórbico/biossíntese , Carboidratos Epimerases/metabolismo , Parede Celular/enzimologia , Solanum lycopersicum/enzimologia , Carboidratos Epimerases/genética , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/crescimento & desenvolvimento , Estresse Oxidativo , Plantas Geneticamente Modificadas , Polissacarídeos/biossíntese , Interferência de RNA
20.
J Exp Bot ; 59(2): 273-88, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18267945

RESUMO

It has previously been shown that down-regulation of an auxin response factor gene (DR12) results in pleiotropic phenotypes including enhanced fruit firmness in antisense transgenic tomato (AS-DR12). To uncover the nature of the ripening-associated modifications affecting fruit texture, comparative analyses were performed of pectin composition and structure in cell wall pericarp tissue of wild-type and AS-DR12 fruit at mature green (MG) and red-ripe (RR) stages. Throughout ripening, pectin showed a decrease in methyl esterification and in the content of galactan side chains in both genotypes. At mature green stage, pectin content in methyl ester groups was slightly higher in AS-DR12 fruit than in wild type, but this ratio was reversed at the red-ripe stage. The amount of water- and oxalate-soluble pectins increased at the red-ripe stage in the wild type, but decreased in AS-DR12. The distribution of methyl ester groups on the homogalaturonan backbone differed between the two genotypes. There was no evidence of more calcium cross-linked homogalacturan involved in cell-to-cell adhesion in AS-DR12 compared with wild-type fruit. Furthermore, the outer pericarp contains higher proportion of small cells in AS-DR12 fruit than in wild type and higher occurrence of (1-->5) alpha-L-arabinan epitope at the RR stage. It is concluded that the increased firmness of transgenic fruit does not result from a major impairment of ripening-related pectin metabolism, but rather involves differences in pectin fine structure associated with changes in tissue architecture.


Assuntos
Parede Celular/metabolismo , Frutas/metabolismo , Pectinas/metabolismo , Proteínas de Plantas/metabolismo , Solanum lycopersicum/metabolismo , Carboidratos/isolamento & purificação , Parede Celular/ultraestrutura , Regulação para Baixo , Frutas/ultraestrutura , Imunoquímica , Solanum lycopersicum/genética , Solanum lycopersicum/ultraestrutura , Ácido Oxálico/química , Pectinas/química , Pectinas/ultraestrutura , Extratos Vegetais/química , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...