Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Speech Lang Pathol ; 23(2): 135-144, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32619363

RESUMO

PURPOSE: This study presents normative data on a screening test, referred to as the Dépistage Rapide Articulation et Phonologie (DRAP), designed to detect European French-speaking children who are at risk for having speech sound disorders. METHOD: The test consists of 20 words which contain late-acquired phonological features such as medial and final /r/, consonant clusters, /s/C sequences, and alveolar and post-alveolar fricatives. The test was given to 196 children, monolingual and bilingual, living in Geneva and San Francisco, and ranging in age from 2.11 through to 6.11. Our analyses examined the influence of bilingualism, context (Geneva or San Francisco), gender and age on the test scores and also looked at the influence of these factors on phonological features in the test. RESULT: There were no strong effects of bilingualism, context, and gender on the test results but strong effects of age. Validity and internal consistency of the test were in the acceptable range. A focus on phonological features indicated that children had difficulty with final clusters and post-alveolar fricatives. CONCLUSION: The study provides encouraging results for the use of this test as a screening measure with French-speaking children.


Assuntos
Multilinguismo , Transtorno Fonológico , Criança , Humanos , Idioma , Fonética , Medida da Produção da Fala , Transtorno Fonológico/diagnóstico
2.
J Enzyme Inhib Med Chem ; 35(1): 432-459, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31899980

RESUMO

A series of new 2,4-bis[(substituted-aminomethyl)phenyl]quinoline, 1,3-bis[(substituted-aminomethyl)phenyl]isoquinoline, and 2,4-bis[(substituted-aminomethyl)phenyl]quinazoline derivatives was designed, synthesised, and evaluated in vitro against three protozoan parasites (Plasmodium falciparum, Leishmania donovani, and Trypanosoma brucei brucei). Biological results showed antiprotozoal activity with IC50 values in the µM range. In addition, the in vitro cytotoxicity of these original molecules was assessed with human HepG2 cells. The quinoline 1c was identified as the most potent antimalarial candidate with a ratio of cytotoxic to antiparasitic activities of 97 against the P. falciparum CQ-sensitive strain 3D7. The quinazoline 3h was also identified as the most potent trypanosomal candidate with a selectivity index (SI) of 43 on T. brucei brucei strain. Moreover, as the telomeres of the parasites P. falciparum and Trypanosoma are possible targets of this kind of nitrogen heterocyclic compounds, we have also investigated stabilisation of the Plasmodium and Trypanosoma telomeric G-quadruplexes by our best compounds through FRET melting assays.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Desenho de Fármacos , Quinolinas/química , Quinolinas/farmacologia , Antiprotozoários/síntese química , Células Hep G2 , Humanos , Leishmania donovani/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/síntese química , Relação Estrutura-Atividade , Trypanosoma brucei brucei/efeitos dos fármacos
3.
Pharmaceuticals (Basel) ; 12(4)2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31652873

RESUMO

Gram-negative bacteria's resistance such as Pseudomonas aeruginosa and the Burkholderia group to conventional antibiotics leads to therapeutic failure. Use of siderophores as Trojan horses to internalize antibacterial agents or toxic metals within bacteria is a promising strategy to overcome resistance phenomenon. To combat the Pseudomonas sp, we have synthesized and studied two piperazine-based siderophore mimetics carrying either catecholate moieties (1) or hydroxypyridinone groups (2) as iron chelators. These siderophore-like molecules were prepared in no more than four steps with good global yields. The physicochemical study has highlighted a strong iron affinity since their pFe values were higher than 20. 1 possesses even a pFe value superior than those of pyoverdine, the P. aeruginosa endogenous siderophore, suggesting its potential ability to compete with it. At physiological pH, 1 forms mainly a 2:3 complex with iron, whereas two species are observed for 2. Unfortunately, the corresponding Ga(III)-1 and 2 complexes showed no antibacterial activity against P. aeruginosa DSM 1117 strain. The evaluation of their siderophore-like activity showed that 1 and 2 could be internalized by the bacteria.

4.
Eur J Med Chem ; 161: 277-291, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366254

RESUMO

Despite the recent reductions in the global burden of malaria, this disease remains a devastating cause of death in tropical and subtropical regions. As there is no broadly effective vaccine for malaria, prevention and treatment still rely on chemotherapy. Unfortunately, emerging resistance to the gold standard artemisinin combination therapies means that new drugs with novel modes of action are urgently needed. In this context, Plasmodium histone modifying enzymes have emerged as potential drug targets, prompting us to develop and optimize compounds directed against such epigenetic targets. A panel of 51 compounds designed to target different epigenetic enzymes were screened for activity against Plasmodium falciparum parasites. Based on in vitro activity against drug susceptible and drug-resistant P. falciparum lines, selectivity index criterion and favorable pharmacokinetic properties, four compounds, one HDAC inhibitor (1) and three DNMT inhibitors (37, 43 and 45), were selected for preclinical studies in a mouse model of malaria. In vivo data showed that 37, 43 and 45 exhibited oral efficacy in the mouse model of Plasmodium berghei infection. These compounds represent promising starting points for the development of novel antimalarial drugs.


Assuntos
Antimaláricos/farmacologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Quinazolinas/farmacologia , Animais , Antimaláricos/síntese química , Antimaláricos/química , Relação Dose-Resposta a Droga , Fibroblastos/efeitos dos fármacos , Fibroblastos/microbiologia , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Conformação Molecular , Testes de Sensibilidade Parasitária , Plasmodium falciparum/crescimento & desenvolvimento , Quinazolinas/síntese química , Quinazolinas/química , Relação Estrutura-Atividade
5.
PLoS Pathog ; 14(2): e1006836, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29470517

RESUMO

Apicomplexan parasites are global killers, being the causative agents of diseases like toxoplasmosis and malaria. These parasites are known to be hypersensitive to redox imbalance, yet little is understood about the cellular roles of their various redox regulators. The apicoplast, an essential plastid organelle, is a verified apicomplexan drug target. Nuclear-encoded apicoplast proteins traffic through the ER and multiple apicoplast sub-compartments to their place of function. We propose that thioredoxins contribute to the control of protein trafficking and of protein function within these apicoplast compartments. We studied the role of two Toxoplasma gondii apicoplast thioredoxins (TgATrx), both essential for parasite survival. By describing the cellular phenotypes of the conditional depletion of either of these redox regulated enzymes we show that each of them contributes to a different apicoplast biogenesis pathway. We provide evidence for TgATrx1's involvement in ER to apicoplast trafficking and TgATrx2 in the control of apicoplast gene expression components. Substrate pull-down further recognizes gene expression factors that interact with TgATrx2. We use genetic complementation to demonstrate that the function of both TgATrxs is dependent on their disulphide exchange activity. Finally, TgATrx2 is divergent from human thioredoxins. We demonstrate its activity in vitro thus providing scope for drug screening. Our study represents the first functional characterization of thioredoxins in Toxoplasma, highlights the importance of redox regulation of apicoplast functions and provides new tools to study redox biology in these parasites.


Assuntos
Apicoplastos/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Biogênese de Organelas , Tiorredoxinas/metabolismo , Toxoplasma/fisiologia , Sequência de Aminoácidos , Biomarcadores/metabolismo , Sequência Conservada , Evolução Molecular , Técnicas de Silenciamento de Genes , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mutação , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Multimerização Proteica , Transporte Proteico , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Tiorredoxinas/química , Tiorredoxinas/genética , Toxoplasma/citologia , Toxoplasma/crescimento & desenvolvimento
6.
Front Microbiol ; 7: 1682, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27822206

RESUMO

Ancestral sequence reconstruction has been widely used to test evolution-based hypotheses. The genome of the European tick vector, Ixodes ricinus, encodes for defensin peptides with diverse antimicrobial activities against distantly related pathogens. These pathogens include fungi, Gram-negative, and Gram-positive bacteria, i.e., a wide antimicrobial spectrum. Ticks do not transmit these pathogens, suggesting that these defensins may act against a wide range of microbes encountered by ticks during blood feeding or off-host periods. As demonstrated here, these I. ricinus defensins are also effective against the apicomplexan parasite Plasmodium falciparum. To study the general evolution of antimicrobial activity in tick defensins, the ancestral amino acid sequence of chelicerate defensins, which existed approximately 444 million years ago, was reconstructed using publicly available scorpion and tick defensin sequences (named Scorpions-Ticks Defensins Ancestor, STiDA). The activity of STiDA was tested against P. falciparum and the same Gram-negative and Gram-positive bacteria that were used for the I. ricinus defensins. While some extant tick defensins exhibit a wide antimicrobial spectrum, the ancestral defensin showed moderate activity against one of the tested microbes, P. falciparum. This study suggests that amino acid variability and defensin family expansion increased the antimicrobial spectrum of ancestral tick defensins.

7.
PLoS One ; 10(3): e0117966, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25786129

RESUMO

Lysine acetylation is a reversible post-translational modification (PTM) that has been detected on thousands of proteins in nearly all cellular compartments. The role of this widespread PTM has yet to be fully elucidated, but can impact protein localization, interactions, activity, and stability. Here we present the first proteome-wide survey of lysine acetylation in cortical astrocytes, a subtype of glia that is a component of the blood-brain barrier and a key regulator of neuronal function and plasticity. We identified 529 lysine acetylation sites across 304 proteins found in multiple cellular compartments that largely function in RNA processing/transcription, metabolism, chromatin biology, and translation. Two hundred and seventy-seven of the acetylated lysines we identified on 186 proteins have not been reported previously in any other cell type. We also mapped an acetylome of astrocytes infected with the brain parasite, Toxoplasma gondii. It has been shown that infection with T. gondii modulates host cell gene expression, including several lysine acetyltransferase (KAT) and deacetylase (KDAC) genes, suggesting that the host acetylome may also be altered during infection. In the T. gondii-infected astrocytes, we identified 34 proteins exhibiting a level of acetylation >2-fold and 24 with a level of acetylation <2-fold relative to uninfected astrocytes. Our study documents the first acetylome map for cortical astrocytes, uncovers novel lysine acetylation sites, and demonstrates that T. gondii infection produces an altered acetylome.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoma/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Acetilação , Animais , Lisina , Ratos , Ratos Sprague-Dawley
8.
PLoS One ; 9(11): e112096, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369183

RESUMO

Toxoplasma gondii and malaria parasites contain a unique and essential relict plastid called the apicoplast. Most apicoplast proteins are encoded in the nucleus and are transported to the organelle via the endoplasmic reticulum (ER). Three trafficking routes have been proposed for apicoplast membrane proteins: (i) vesicular trafficking from the ER to the Golgi and then to the apicoplast, (ii) contiguity between the ER membrane and the apicoplast allowing direct flow of proteins, and (iii) vesicular transport directly from the ER to the apicoplast. Previously, we identified a set of membrane proteins of the T. gondii apicoplast which were also detected in large vesicles near the organelle. Data presented here show that the large vesicles bearing apicoplast membrane proteins are not the major carriers of luminal proteins. The vesicles continue to appear in parasites which have lost their plastid due to mis-segregation, indicating that the vesicles are not derived from the apicoplast. To test for a role of the Golgi body in vesicle formation, parasites were treated with brefeldin A or transiently transfected with a dominant-negative mutant of Sar1, a GTPase required for ER to Golgi trafficking. The immunofluorescence patterns showed little change. These findings were confirmed using stable transfectants, which expressed the toxic dominant-negative sar1 following Cre-loxP mediated promoter juxtaposition. Our data support the hypothesis that the large vesicles do not mediate the trafficking of luminal proteins to the apicoplast. The results further show that the large vesicles bearing apicoplast membrane proteins continue to be observed in the absence of Golgi and plastid function. These data raise the possibility that the apicoplast proteome is generated by two novel ER to plastid trafficking pathways, plus the small set of proteins encoded by the apicoplast genome.


Assuntos
Apicoplastos/metabolismo , Complexo de Golgi/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Vesículas Transportadoras/metabolismo , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Biossíntese de Proteínas , Transporte Proteico
9.
Eukaryot Cell ; 11(3): 260-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22286091

RESUMO

Rapid clonal antigenic variation in Babesia bovis involves the variant erythrocyte surface antigen-1 (VESA1) protein expressed on the infected-erythrocyte surface. Because of the significance of this heterodimeric protein for demonstrated mechanisms of parasite survival and virulence, there is a need to understand how expression of the ves multigene family encoding this protein is controlled. As an initial step toward this goal, we present here initial characterization of the ves promoter driving transcription of VESA1a and -1b subunits. A series of transfection constructs containing various sequence elements from the in vivo locus of active ves transcription (LAT) were used to drive expression of the firefly luciferase gene in a dual luciferase-normalized assay. The results of this approach reveal the presence of two bidirectional promoter activities within the 434-bp intergenic region (IGr), influenced by putative regulatory sequences embedded within the flanking ves1α and ves1ß genes. Repressor-like effects on the apposing gene were observed for intron 1 of both ves1α and ves1ß. This effect is apparently not dependent upon intronic promoter activity and acts only in cis. The expression of genes within the ves family is likely modulated by local elements embedded within ves coding sequences outside the intergenic promoter region in concert with chromatin modifications. These results provide a framework to help us begin to understand gene regulation during antigenic variation in B. bovis.


Assuntos
Antígenos de Superfície/genética , Babesia bovis/genética , Regulação da Expressão Gênica , Regiões Promotoras Genéticas , Proteínas de Protozoários/genética , Animais , Variação Antigênica , Antígenos de Superfície/imunologia , Antígenos de Superfície/metabolismo , Babesia bovis/imunologia , Babesia bovis/metabolismo , Babesiose/imunologia , Babesiose/parasitologia , Bovinos , DNA Intergênico , Eritrócitos/parasitologia , Genes Reporter , Íntrons , Luciferases , Família Multigênica , Plasmídeos , Subunidades Proteicas/genética , Subunidades Proteicas/imunologia , Subunidades Proteicas/metabolismo , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Transcrição Gênica
10.
Mol Biochem Parasitol ; 157(2): 205-16, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18083248

RESUMO

The co-evolutionary dynamics that exist in host-parasite interactions sometimes lead to compatibility polymorphisms, the molecular bases of which are rarely investigated. To identify key molecules that are involved in this phenomenon in the Schistosoma mansoni/Biomphalaria glabrata model, we developed a comparative proteomics approach using the larval stages that interact with the invertebrate host. We used qualitative and quantitative analyses to compare the total proteomes of primary sporocysts from compatible and incompatible parasite strains. The differentially expressed proteins thus detected belong to three main functional groups: (i) scavengers of reactive oxygen species, (ii) components of primary metabolism, and (iii) mucin-like proteins. We discuss the putative roles played by these protein families as determinants of compatibility polymorphism. Since mucins are known to play key roles in the host-parasite interplay, we consider the newly discovered S. mansoni mucin-like proteins (SmMucin-like) as the most promising candidates for influencing the fate of host-parasite interactions. An analysis of their expression is presented in a paper published in the same journal issue.


Assuntos
Biomphalaria/parasitologia , Interações Hospedeiro-Parasita , Larva/química , Proteoma/análise , Schistosoma mansoni/química , Animais , Cromatografia Líquida , Cricetinae , Eletroforese em Gel Bidimensional , Enzimas/genética , Enzimas/isolamento & purificação , Sequestradores de Radicais Livres/isolamento & purificação , Larva/genética , Mucinas/genética , Mucinas/isolamento & purificação , Schistosoma mansoni/genética , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...