Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-37047202

RESUMO

The downregulation of Pleckstrin Homology-Like Domain family A member 1 (PHLDA1) expression mediates resistance to targeted therapies in receptor tyrosine kinase-driven cancers. The restoration and maintenance of PHLDA1 levels in cancer cells thus constitutes a potential strategy to circumvent resistance to inhibitors of receptor tyrosine kinases. Through a pharmacological approach, we identify the inhibition of MAPK signalling as a crucial step in PHLDA1 downregulation. Further ChIP-qPCR analysis revealed that MEK1/2 inhibition produces significant epigenetic changes at the PHLDA1 locus, specifically a decrease in the activatory marks H3Kme3 and H3K27ac. In line with this, we show that treatment with the clinically relevant class I histone deacetylase (HDAC) inhibitor 4SC-202 restores PHLDA1 expression in lapatinib-resistant human epidermal growth factor receptor-2 (HER2)+ breast cancer cells. Critically, we show that when given in combination, 4SC-202 and lapatinib exert synergistic effects on 2D cell proliferation and colony formation capacity. We therefore propose that co-treatment with 4SC-202 may prolong the clinical efficacy of lapatinib in HER2+ breast cancer patients.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Lapatinib/farmacologia , Lapatinib/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Histona Desacetilases , Quinazolinas/farmacologia , Resistencia a Medicamentos Antineoplásicos , Receptor ErbB-2/metabolismo , Linhagem Celular Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/metabolismo
3.
Oncogene ; 42(7): 491-500, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36357571

RESUMO

Pancreatic stellate cells (PSCs) are key to the treatment-refractory desmoplastic phenotype of pancreatic ductal adenocarcinoma (PDAC) and have received considerable attention as a stromal target for cancer therapy. This approach demands detailed understanding of their pro- and anti-tumourigenic effects. Interrogating PSC-cancer cell interactions in 3D models, we identified nuclear FGFR1 as critical for PSC-led invasion of cancer cells. ChIP-seq analysis of FGFR1 in PSCs revealed a number of FGFR1 interaction sites within the genome, notably NRG1, which encodes the ERBB ligand Neuregulin. We show that nuclear FGFR1 regulates transcription of NRG1, which in turn acts in autocrine fashion through an ERBB2/4 heterodimer to promote invasion. In support of this, recombinant NRG1 in 3D model systems rescued the loss of invasion incurred by FGFR inhibition. In vivo we demonstrate that, while FGFR inhibition does not affect the growth of pancreatic tumours in mice, local invasion into the pancreas is reduced. Thus, FGFR and NRG1 may present new stromal targets for PDAC therapy.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Regulação para Cima , Neuregulina-1/genética , Neuregulina-1/farmacologia , Células Estreladas do Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...