Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Eur J Hum Genet ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38637700

RESUMO

Genetic testing can provide valuable information to mitigate personal disease risk, but the use of genetic results in life insurance underwriting is known to deter many consumers from pursuing genetic testing. In 2019, following Australian Federal Parliamentary Inquiry recommendations, the Financial Services Council (FSC) introduced an industry-led partial moratorium, prohibiting life insurance companies from using genetic test results for policies up to $AUD500,000. We used semi-structured interviews to explore genetic test consumers' experiences and views about the FSC moratorium and the use of genetic results by life insurers. Individuals who participated in an online survey and agreed to be re-contacted to discuss the issue further were invited. Interviews were 20-30-min long, conducted via video conference, transcribed verbatim and analysed using inductive content analysis. Twenty-seven participants were interviewed. Despite the moratorium, concerns about genetic discrimination in life insurance were prevalent. Participants reported instances where life insurers did not consider risk mitigation when assessing risk for policies based on genetic results, contrary to legal requirements. Most participants felt that the moratorium provided inadequate protection against discrimination, and that government legislation regulating life insurers' use of genetic results is necessary. Many participants perceived the financial limits to be inadequate, given the cost-of-living in Australia. Our findings indicate that from the perspective of participants, the moratorium has not been effective in allaying fears about genetic discrimination or ensuring adequate access to life insurance products. Concern about genetic discrimination in life insurance remains prevalent in Australia.

2.
Genet Med ; 26(5): 101076, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38258669

RESUMO

PURPOSE: Genome sequencing (GS)-specific diagnostic rates in prospective tightly ascertained exome sequencing (ES)-negative intellectual disability (ID) cohorts have not been reported extensively. METHODS: ES, GS, epigenetic signatures, and long-read sequencing diagnoses were assessed in 74 trios with at least moderate ID. RESULTS: The ES diagnostic yield was 42 of 74 (57%). GS diagnoses were made in 9 of 32 (28%) ES-unresolved families. Repeated ES with a contemporary pipeline on the GS-diagnosed families identified 8 of 9 single-nucleotide variations/copy-number variations undetected in older ES, confirming a GS-unique diagnostic rate of 1 in 32 (3%). Episignatures contributed diagnostic information in 9% with GS corroboration in 1 of 32 (3%) and diagnostic clues in 2 of 32 (6%). A genetic etiology for ID was detected in 51 of 74 (69%) families. Twelve candidate disease genes were identified. Contemporary ES followed by GS cost US$4976 (95% CI: $3704; $6969) per diagnosis and first-line GS at a cost of $7062 (95% CI: $6210; $8475) per diagnosis. CONCLUSION: Performing GS only in ID trios would be cost equivalent to ES if GS were available at $2435, about a 60% reduction from current prices. This study demonstrates that first-line GS achieves higher diagnostic rate than contemporary ES but at a higher cost.


Assuntos
Sequenciamento do Exoma , Exoma , Deficiência Intelectual , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Masculino , Feminino , Exoma/genética , Sequenciamento do Exoma/economia , Estudos de Coortes , Testes Genéticos/economia , Testes Genéticos/métodos , Sequenciamento Completo do Genoma/economia , Criança , Genoma Humano/genética , Variações do Número de Cópias de DNA/genética , Polimorfismo de Nucleotídeo Único/genética , Pré-Escolar
3.
Eur J Hum Genet ; 32(1): 98-108, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37280361

RESUMO

Genetic risk information for medically actionable conditions has relevance for patients' blood relatives. However, cascade testing uptake in at-risk families is <50%, and the burden of contacting relatives is a significant barrier to dissemination of risk information. Health professionals (HPs) could notify at-risk relatives directly, with patients' consent. This practice is supported by international literature, including strong public support. However, there is little exploration of the Australian public's views about this issue. We surveyed Australian adults using a consumer research company. Respondents were provided a hypothetical scenario and asked about views and preferences regarding direct contact by HPs. 1030 members of the public responded, with median age 45 y and 51% female. The majority would want to be told about genetic risk for conditions that can be prevented/treated early (85%) and contacted directly by a HP (68%). Most preferred a letter that included specific information about the genetic condition in the family (67%) and had no privacy concerns about HPs sending a letter using contact details provided by a relative (85%). A minority (< 5%) had significant privacy concerns, mostly about use of personal contact information. Concerns included ensuring information was not shared with third parties. Almost 50% would prefer that a family member contacted them before the letter was sent, while about half did not prefer this or were unsure. The Australian public supports (and prefers) direct notification of relatives at risk of medically actionable genetic conditions. Guidelines would assist with clarifying clinicians' discretion in this area.


Assuntos
Consentimento Livre e Esclarecido , Pacientes , Adulto , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Austrália , Fatores de Risco , Inquéritos e Questionários
4.
Eur J Hum Genet ; 32(3): 286-294, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37169978

RESUMO

Fears of genetic discrimination in life insurance continue to deter some Australians from genetic testing. In July 2019, the life insurance industry introduced a partial, self-regulated moratorium restricting the use of genetic results in underwriting, applicable to policies up to certain limits (eg AUD$500,000 for death cover).We administered an online survey to consumers who had taken, or been offered, clinical genetic testing for adult-onset conditions, to gather views and experiences about the moratorium and the use of genetic results in life insurance, including its regulation.Most respondents (n = 367) had undertaken a genetic test (89%), and had a positive test result (76%; n = 243/321). Almost 30% (n = 94/326) reported testing after 1 July 2019. Relatively few respondents reported knowing about the moratorium (16%; n = 54/340) or that use of genetic results in life insurance underwriting is legal (17%; n = 60/348). Only 4% (n = 14/350) consider this practice should be allowed. Some respondents reported ongoing difficulties accessing life insurance products, even after the moratorium. Further, discrimination concerns continue to affect some consumers' decision-making about having clinical testing and applying for life insurance products, despite the Moratorium being in place. Most respondents (88%; n = 298/340) support the introduction of legislation by the Australian government to regulate this issue.Despite the introduction of a partial moratorium in Australia, fears of genetic discrimination persist, and continue to deter people from genetic testing. Consumers overwhelmingly consider life insurers should not be allowed to use genetic results in underwriting, and that federal legislation is required to regulate this area.


Assuntos
População Australasiana , Seleção Tendenciosa de Seguro , Seguro de Vida , Adulto , Humanos , Austrália , Testes Genéticos , Inquéritos e Questionários
6.
Eur J Hum Genet ; 32(1): 61-68, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37709947

RESUMO

There has been keen interest in whether dynamic consent should be used in health research but few real-world studies have evaluated its use. Australian Genomics piloted and evaluated CTRL ('control'), a digital consent tool incorporating granular, dynamic decision-making and communication for genomic research. Individuals from a Cardiovascular Genetic Disorders Flagship were invited in person (prospective cohort) or by email (retrospective cohort) to register for CTRL after initial study recruitment. Demographics, consent choices, experience surveys and website analytics were analysed using descriptive statistics. Ninety-one individuals registered to CTRL (15.5% of the prospective cohort and 11.8% of the retrospective cohort). Significantly more males than females registered when invited retrospectively, but there was no difference in age, gender, or education level between those who did and did not use CTRL. Variation in individual consent choices about secondary data use and return of results supports the desirability of providing granular consent options. Robust conclusions were not drawn from satisfaction, trust, decision regret and knowledge outcome measures: differences between CTRL and non-CTRL cohorts did not emerge. Analytics indicate CTRL is acceptable, although underutilised. This is one of the first studies evaluating uptake and decision making using online consent tools and will inform refinement of future designs.


Assuntos
Comunicação , Consentimento Livre e Esclarecido , Masculino , Feminino , Humanos , Estudos Retrospectivos , Estudos Prospectivos , Austrália
7.
Cell Genom ; 3(10): 100386, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37868041

RESUMO

A lack of diversity in genomics for health continues to hinder equitable leadership and access to precision medicine approaches for underrepresented populations. To avoid perpetuating biases within the genomics workforce and genomic data collection practices, equity, diversity, and inclusion (EDI) must be addressed. This paper documents the journey taken by the Global Alliance for Genomics and Health (a genomics-based standard-setting and policy-framing organization) to create a more equitable, diverse, and inclusive environment for its standards and members. Initial steps include the creation of two groups: the Equity, Diversity, and Inclusion Advisory Group and the Regulatory and Ethics Diversity Group. Following a framework that we call "Reflected in our Teams, Reflected in our Standards," both groups address EDI at different stages in their policy development process.

8.
Hum Genet ; 142(9): 1407-1416, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37479894

RESUMO

Genomics research related to Indigenous people has been at worst exploitative and at best, retrospectively on a journey to improve effective engagement of Indigenous individuals and communities. Genomics can positively impact all stages of clinical management, and to improve genomic effectiveness researchers aggregate genomic data from diverse global sub-populations, such as shared ancestry groupings, as people within these groupings will have a greater proportion of shared DNA traits. While genomics is already being used worldwide to improve lives, its utility and effectiveness has not been maximized for individuals with Indigenous ancestry. Several large datasets of human genetic variation have been made publicly available, of which the most widely used is the Genome Aggregation Database (gnomAD), but none of these databases currently contain any population-specific data for Indigenous populations. There are many reasons why Indigenous people have been largely left out of genomics research and, because of this, miss out on the benefits offered. It is also clear that if research is to be effective, it needs to be done 'with' and not 'on' Indigenous communities. This systematic review of the literature regarding Indigenous peoples (in high income countries) and genomics aims to review the existing literature and identify areas of strength and weakness in study design and conduct, focusing on the effectiveness of Indigenous community engagement.


Assuntos
Genômica , Povos Indígenas , Humanos , Países Desenvolvidos , Estudos Retrospectivos , Povos Indígenas/genética , Bases de Dados Factuais
9.
BioTech (Basel) ; 12(2)2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-37366793

RESUMO

Genetic risk information has relevance for patients' blood relatives. However, cascade testing uptake in at-risk families is <50%. International research supports direct notification of at-risk relatives by health professionals (HPs), with patient consent. However, HPs express concerns about the privacy implications of this practice. Our privacy analysis, grounded in a clinically relevant hypothetical scenario, considers the types of personal information involved in direct notification of at-risk relatives and the application of Australian privacy regulations. It finds that collecting relatives' contact details, and using those details (with patient consent) to notify relatives of possible genetic risk, does not breach Australian privacy law, providing that HPs adhere to regulatory requirements. It finds the purported "right to know" does not prevent disclosure of genetic information to at-risk relatives. Finally, the analysis confirms that the discretion available to HPs does not equate to a positive duty to warn at-risk relatives. Thus, direct notification of a patient's at-risk relatives regarding medically actionable genetic information, with patient consent, is not a breach of Australian privacy regulations, providing it is conducted in accordance with the applicable principles set out. Clinical services should consider offering this service to patients where appropriate. National guidelines would assist with the clarification of the discretion for HPs.

10.
Am J Hum Genet ; 110(3): 419-426, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868206

RESUMO

Australian Genomics is a national collaborative partnership of more than 100 organizations piloting a whole-of-system approach to integrating genomics into healthcare, based on federation principles. In the first five years of operation, Australian Genomics has evaluated the outcomes of genomic testing in more than 5,200 individuals across 19 rare disease and cancer flagship studies. Comprehensive analyses of the health economic, policy, ethical, legal, implementation and workforce implications of incorporating genomics in the Australian context have informed evidence-based change in policy and practice, resulting in national government funding and equity of access for a range of genomic tests. Simultaneously, Australian Genomics has built national skills, infrastructure, policy, and data resources to enable effective data sharing to drive discovery research and support improvements in clinical genomic delivery.


Assuntos
Genômica , Política de Saúde , Humanos , Austrália , Doenças Raras , Atenção à Saúde
11.
J Pers Med ; 12(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36579509

RESUMO

Reproductive genetic carrier screening (RGCS) provides people with information about their chance of having children with autosomal recessive or X-linked genetic conditions, enabling informed reproductive decision-making. RGCS is recommended to be offered to all couples during preconception or in early pregnancy. However, cost and a lack of awareness may prevent access. To address this, the Australian Government funded Mackenzie's Mission­the Australian Reproductive Genetic Carrier Screening Project. Mackenzie's Mission aims to assess the acceptability and feasibility of an easily accessible RGCS program, provided free of charge to the participant. In study Phase 1, implementation needs were mapped, and key study elements were developed. In Phase 2, RGCS is being offered by healthcare providers educated by the study team. Reproductive couples who provide consent are screened for over 1200 genes associated with >750 serious, childhood-onset genetic conditions. Those with an increased chance result are provided comprehensive genetic counseling support. Reproductive couples, recruiting healthcare providers, and study team members are also invited to complete surveys and/or interviews. In Phase 3, a mixed-methods analysis will be undertaken to assess the program outcomes, psychosocial implications and implementation considerations alongside an ongoing bioethical analysis and a health economic evaluation. Findings will inform the implementation of an ethically robust RGCS program.

12.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36332611

RESUMO

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Assuntos
Bases de Dados Genéticas , Laboratórios , Humanos , Variação Genética , Austrália , Testes Genéticos
13.
Eur J Hum Genet ; 30(11): 1262-1268, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35902697

RESUMO

Australian life insurance companies can legally use genetic test results in underwriting, which can lead to genetic discrimination. In 2019, the Financial Services Council (Australian life insurance industry governing body) introduced a partial moratorium restricting the use of genetic testing in underwriting policies ≤ $500,000 (active 2019-2024). Health professionals (HPs), especially clinical geneticists and genetic counsellors, often discuss the implications of genetic testing with patients, and provide critical insights into the effectiveness of the moratorium. Using a sequential explanatory mixed methods design, we interviewed 23 Australian HPs, who regularly discuss genetic testing with patients and had previously completed an online survey about genetic testing and life insurance. Interviews explored views and experiences about the moratorium, and regulation, in greater depth. Interview transcripts were analysed using thematic analysis. Two key themes emerged from views expressed by HPs during interviews (about matters reported to or observed by them): 1) benefits of the moratorium, and 2) concerns about the moratorium. While HPs reported that the moratorium reassures some consumers, concerns include industry self-regulation, uncertainty created by the temporary time period, and the inadequacy of the moratorium's financial limits for patients' financial needs. Although a minority of HPs felt the current industry self-regulated moratorium is an adequate solution to genetic discrimination, the vast majority (19/23) expressed concern with industry self-regulation and most felt government regulation is required to adequately protect consumers. HPs in Australia are concerned about the adequacy of the FSC moratorium with regards to consumer protections, and suggest government regulation is required.


Assuntos
Testes Genéticos , Seguro de Vida , Humanos , Austrália , Pesquisa Qualitativa , Pessoal de Saúde
14.
J Med Genet ; 59(8): 817-826, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34544841

RESUMO

BACKGROUND: In 2019, the Australian life insurance industry introduced a partial moratorium (ban) limiting the use of genetic test results in life insurance underwriting. The moratorium is industry self-regulated and applies only to policies below certain financial limits (eg, $500 000 of death cover). METHODS: We surveyed Australian health professionals (HPs) who discuss genetic testing with patients, to assess knowledge of the moratorium; reported patient experiences since its commencement; and HP views regarding regulation of genetic discrimination (GD) in Australia. RESULTS: Between April and June 2020, 166 eligible HPs responded to the online survey. Of these, 86% were aware of the moratorium, but <50% had attended related training/information sessions. Only 16% answered all knowledge questions correctly, yet 69% believed they had sufficient knowledge to advise patients. Genetics HPs' awareness and knowledge were better than non-genetics HPs' (p<0.05). There was some reported decrease in patients delaying/declining testing after the moratorium's introduction, however, 42% of HPs disagreed that patients were more willing to have testing post-moratorium. Although many (76%) felt the moratorium resolved some GD concerns, most (88%) still have concerns, primarily around self-regulation, financial limits and the moratorium's temporary nature. Almost half (49%) of HPs reported being dissatisfied with the moratorium as a solution to GD. The majority (95%) felt government oversight is required, and 93% felt specific Australian legislation regarding GD is required. CONCLUSION: While the current Australian moratorium is considered a step forward, most HPs believe it falls short of an adequate long-term regulatory solution to GD in life insurance.


Assuntos
Testes Genéticos , Seguro de Vida , Austrália , Humanos , Inquéritos e Questionários
15.
J Paediatr Child Health ; 58(1): 8-15, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34427008

RESUMO

Monogenic rare disorders contribute significantly to paediatric morbidity and mortality, and elucidation of the underlying genetic cause may have benefits for patients, families and clinicians. Advances in genomic technology have enabled diagnostic yields of up to 50% in some paediatric cohorts. This has led to an increase in the uptake of genetic testing across paediatric disciplines. This can place an increased burden on paediatricians, who may now be responsible for interpreting and explaining test results to patients. However, genomic results can be complex, and sometimes inconclusive for the ordering paediatrician. Results may also cause uncertainty and anxiety for patients and their families. The paediatrician's genetic literacy and knowledge of genetic principles are therefore critical to inform discussions with families and guide ongoing patient care. Here, we present four hypothetical case vignettes where genomic testing is undertaken, and discuss possible results and their implications for paediatricians and families. We also provide a list of key terms for paediatricians.


Assuntos
Genômica , Pediatras , Criança , Testes Genéticos , Humanos
16.
Cell Genom ; 1(2): None, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34820659

RESUMO

Human biomedical datasets that are critical for research and clinical studies to benefit human health also often contain sensitive or potentially identifying information of individual participants. Thus, care must be taken when they are processed and made available to comply with ethical and regulatory frameworks and informed consent data conditions. To enable and streamline data access for these biomedical datasets, the Global Alliance for Genomics and Health (GA4GH) Data Use and Researcher Identities (DURI) work stream developed and approved the Data Use Ontology (DUO) standard. DUO is a hierarchical vocabulary of human and machine-readable data use terms that consistently and unambiguously represents a dataset's allowable data uses. DUO has been implemented by major international stakeholders such as the Broad and Sanger Institutes and is currently used in annotation of over 200,000 datasets worldwide. Using DUO in data management and access facilitates researchers' discovery and access of relevant datasets. DUO annotations increase the FAIRness of datasets and support data linkages using common data use profiles when integrating the data for secondary analyses. DUO is implemented in the Web Ontology Language (OWL) and, to increase community awareness and engagement, hosted in an open, centralized GitHub repository. DUO, together with the GA4GH Passport standard, offers a new, efficient, and streamlined data authorization and access framework that has enabled increased sharing of biomedical datasets worldwide.

17.
Methods Protoc ; 4(2)2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-34205718

RESUMO

(1) Background: Genomic precision medicine (PM) utilises people's genomic data to inform the delivery of preventive and therapeutic health care. PM has not been well-established for use with people of Aboriginal and Torres Strait Islander ancestry due to the paucity of genomic data from these communities. We report the development of a new protocol using co-design methods to enhance the potential use of PM for Aboriginal Australians. (2) Methods: This iterative qualitative study consists of five main phases. Phase-I will ensure appropriate governance of the project and establishment of a Project Advisory Committee. Following an initial consultation with the Aboriginal community, Phase-II will invite community members to participate in co-design workshops. In Phase-III, the Chief Investigators will participate in co-design workshops and document generated ideas. The notes shall be analysed thematically in Phase-IV with Aboriginal community representatives, and the summary will be disseminated to the communities. In Phase-V, we will evaluate the co-design process and adapt our protocol for the use in partnership with other communities. (3) Discussion: This study protocol represents a crucial first step to ensure that PM research is relevant and acceptable to Aboriginal Australians. Without fair access to PM, the gap in health outcome between Aboriginal and non-Aboriginal Australians will continue to widen.

18.
BMC Med Ethics ; 22(1): 63, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020638

RESUMO

BACKGROUND: The use of genetic test results in risk-rated insurance is a significant concern internationally, with many countries banning or restricting the use of genetic test results in underwriting. In Australia, life insurers' use of genetic test results is legal and self-regulated by the insurance industry (Financial Services Council (FSC)). In 2018, an Australian Parliamentary Inquiry recommended that insurers' use of genetic test results in underwriting should be prohibited. In 2019, the FSC introduced an industry self-regulated moratorium on the use of genetic test results. In the absence of government oversight, it is critical that the impact, effectiveness and appropriateness of the moratorium is monitored. Here we describe the protocol of our government-funded research project, which will serve that critical function between 2020 and 2023. METHODS: A realist evaluation framework was developed for the project, using a context-mechanism-outcome (CMO) approach, to systematically assess the impact of the moratorium for a range of stakeholders. Outcomes which need to be achieved for the moratorium to accomplish its intended aims were identified, and specific data collection measures methods were developed to gather the evidence from relevant stakeholder groups (consumers, health professionals, financial industry and genetic research community) to determine if aims are achieved. Results from each arm of the study will be analysed and published in peer-reviewed journals as they become available. DISCUSSION: The A-GLIMMER project will provide essential monitoring of the impact and effectiveness of the self-regulated insurance moratorium. On completion of the study (3 years) a Stakeholder Report will be compiled. The Stakeholder Report will synthesise the evidence gathered in each arm of the study and use the CMO framework to evaluate the extent to which each of the outcomes have been achieved, and make evidence-based recommendations to the Australian federal government, life insurance industry and other stakeholders.


Assuntos
Seleção Tendenciosa de Seguro , Seguro de Vida , Austrália , Coleta de Dados , Testes Genéticos , Humanos
19.
Eur J Hum Genet ; 29(11): 1645-1653, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33811253

RESUMO

Healthcare systems are increasingly considering widespread implementation of rapid genomic testing of critically ill children, but evidence on the value of the benefits generated is lacking. This information is key for an optimal implementation into healthcare systems. A discrete choice experiment survey was designed to elicit preferences and values for rapid genomic testing in critically ill children. The survey was administered to members of the Australian public and families with lived experience of rapid genomic testing. A Bayesian D-efficient explicit partial profiles design was used, and data were analysed using a panel error component mixed logit model. Preference heterogeneity was explored using a latent class model and fractional logistic regressions. The public (n = 522) and families with lived experiences (n = 25) demonstrated strong preferences for higher diagnostic yield and clinical utility, faster result turnaround times, and lower cost. Society on average would be willing to pay an additional AU$9510 (US$6657) for rapid (2 weeks results turnaround time) and AU$11,000 (US$7700) for ultra-rapid genomic testing (2 days turnaround time) relative to standard diagnostic care. Corresponding estimates among those with lived experiences were AU$10,225 (US$7158) and AU$11,500 (US$8050), respectively. Our work provides further evidence that rapid genomic testing for critically ill children with rare conditions generates substantial utility. The findings can be used to inform cost-benefit analyses as part of broader healthcare system implementation.


Assuntos
Atitude , Comportamento de Escolha , Custos e Análise de Custo , Cuidados Críticos/ética , Testes Genéticos/ética , Adulto , Criança , Cuidados Críticos/economia , Família/psicologia , Testes Genéticos/economia , Humanos , Lactente , Opinião Pública
20.
J Paediatr Child Health ; 57(4): 477-483, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33566436

RESUMO

Genomic testing for a genetic diagnosis is becoming standard of care for many children, especially those with a syndromal intellectual disability. While previously this type of specialised testing was performed mainly by clinical genetics teams, it is increasingly being 'mainstreamed' into standard paediatric care. With the introduction of a new Medicare rebate for genomic testing in May 2020, this type of testing is now available for paediatricians to order, in consultation with clinical genetics. Children must be aged less than 10 years with facial dysmorphism and multiple congenital abnormalities or have global developmental delay or moderate to severe intellectual disability. This rebate should increase the likelihood of a genetic diagnosis, with accompanying benefits for patient management, reproductive planning and diagnostic certainty. Similar to the introduction of chromosomal microarray into mainstream paediatrics, this genomic testing will increase the number of genetic diagnoses, however, will also yield more variants of uncertain significance, incidental findings, and negative results. This paper aims to guide paediatricians through the process of genomic testing, and represents the combined expertise of educators, clinical geneticists, paediatricians and genomic pathologists around Australia. Its purpose is to help paediatricians navigate choosing the right genomic test, consenting patients and understanding the possible outcomes of testing.


Assuntos
Deficiência Intelectual , Pediatria , Idoso , Austrália , Criança , Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Testes Genéticos , Genômica , Humanos , Deficiência Intelectual/genética , Programas Nacionais de Saúde
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...