Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6864, 2023 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-37891154

RESUMO

Bacteria are key contributors to microalgae resource acquisition, competitive performance, and functional diversity, but their potential metabolic interactions with coral microalgal endosymbionts (Symbiodiniaceae) have been largely overlooked. Here, we show that altering the bacterial composition of two widespread Symbiodiniaceae species, during their free-living stage, results in a significant shift in their cellular metabolism. Indeed, the abundance of monosaccharides and the key phytohormone indole-3-acetic acid (IAA) were correlated with the presence of specific bacteria, including members of the Labrenzia (Roseibium) and Marinobacter genera. Single-cell stable isotope tracking revealed that these two bacterial genera are involved in reciprocal exchanges of carbon and nitrogen with Symbiodiniaceae. We identified the provision of IAA by Labrenzia and Marinobacter, and this metabolite caused a significant growth enhancement of Symbiodiniaceae. By unravelling these interkingdom interactions, our work demonstrates how specific bacterial associates fundamentally govern Symbiodiniaceae fitness.


Assuntos
Antozoários , Dinoflagellida , Rhodobacteraceae , Animais , Antozoários/microbiologia , Reguladores de Crescimento de Plantas , Recifes de Corais , Simbiose
2.
Environ Sci Technol ; 57(33): 12325-12338, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37574860

RESUMO

Organic matter (OM) formation and stabilization are critical processes in the eco-engineered pedogenesis of Fe ore tailings, but the underlying mechanisms are unclear. The present 12 month microcosm study has adopted nanoscale secondary ion mass spectrometry (NanoSIMS) and synchrotron-based scanning transmission X-ray microscopy (STXM) techniques to investigate OM formation, molecular signature, and stabilization in tailings at micro- and nanometer scales. In this system, microbial processing of exogenous isotopically labeled OM demonstrated that 13C labeled glucose and 13C/15N labeled plant biomass were decomposed, regenerated, and associated with Fe-rich minerals in a heterogeneous pattern in tailings. Particularly, when tailings were amended with plant biomass, the 15N-rich microbially derived OM was generated and bound to minerals to form an internal organo-mineral association, facilitating further OM stabilization. The organo-mineral associations were primarily underpinned by interactions of carboxyl, amide, aromatic, and/or aliphatic groups with weathered mineral products derived from biotite-like minerals in fresh tailings (i.e., with Fe2+ and Fe3+) or with Fe3+ oxyhydroxides in aged tailings. The study revealed microbial OM generation and subsequent organo-mineral association in Fe ore tailings at the submicrometer scale during early stages of eco-engineered pedogenesis, providing a basis for the development of microbial based technologies toward tailings' ecological rehabilitation.


Assuntos
Nitrogênio , Solo , Solo/química , Minerais/química , Biomassa , Ferro
3.
iScience ; 26(7): 107102, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485366

RESUMO

Ecological engineering of soil formation in tailings is an emerging technology toward sustainable rehabilitation of iron (Fe) ore tailings landscapes worldwide, which requires the formation of well-organized and stable soil aggregates in finely textured tailings. Here, we demonstrate an approach using microbial and rhizosphere processes to progressively drive aggregate formation and development in Fe ore tailings. The aggregates were initially formed through the agglomeration of mineral particles by organic cements derived from microbial decomposition of exogenous organic matter. The aggregate stability was consolidated by colloidal nanosized Fe(III)-Si minerals formed during Fe-bearing primary mineral weathering driven by rhizosphere biogeochemical processes of pioneer plants. From these findings, we proposed a conceptual model for progressive aggregate structure development in the tailings with Fe(III)-Si rich cements as core nuclei. This renewable resource dependent eco-engineering approach opens a sustainable pathway to achieve resilient tailings rehabilitation without resorting to excavating natural soil resources.

4.
Sci Adv ; 9(11): eadf7108, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36921053

RESUMO

Symbiotic cnidarians such as corals and anemones form highly productive and biodiverse coral reef ecosystems in nutrient-poor ocean environments, a phenomenon known as Darwin's paradox. Resolving this paradox requires elucidating the molecular bases of efficient nutrient distribution and recycling in the cnidarian-dinoflagellate symbiosis. Using the sea anemone Aiptasia, we show that during symbiosis, the increased availability of glucose and the presence of the algae jointly induce the coordinated up-regulation and relocalization of glucose and ammonium transporters. These molecular responses are critical to support symbiont functioning and organism-wide nitrogen assimilation through glutamine synthetase/glutamate synthase-mediated amino acid biosynthesis. Our results reveal crucial aspects of the molecular mechanisms underlying nitrogen conservation and recycling in these organisms that allow them to thrive in the nitrogen-poor ocean environments.


Assuntos
Antozoários , Dinoflagellida , Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Recifes de Corais , Ecossistema , Antozoários/genética , Simbiose , Dinoflagellida/genética , Nitrogênio
5.
Nat Microbiol ; 8(3): 510-521, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36759754

RESUMO

Behaviours such as chemotaxis can facilitate metabolic exchanges between phytoplankton and heterotrophic bacteria, which ultimately regulate oceanic productivity and biogeochemistry. However, numerically dominant picophytoplankton have been considered too small to be detected by chemotactic bacteria, implying that cell-cell interactions might not be possible between some of the most abundant organisms in the ocean. Here we examined how bacterial behaviour influences metabolic exchanges at the single-cell level between the ubiquitous picophytoplankton Synechococcus and the heterotrophic bacterium Marinobacter adhaerens, using bacterial mutants deficient in motility and chemotaxis. Stable-isotope tracking revealed that chemotaxis increased nitrogen and carbon uptake of both partners by up to 4.4-fold. A mathematical model following thousands of cells confirmed that short periods of exposure to small but nutrient-rich microenvironments surrounding Synechococcus cells provide a considerable competitive advantage to chemotactic bacteria. These findings reveal that transient interactions mediated by chemotaxis can underpin metabolic relationships among the ocean's most abundant microorganisms.


Assuntos
Quimiotaxia , Synechococcus , Oceanos e Mares , Processos Heterotróficos/fisiologia , Synechococcus/genética , Fitoplâncton/genética , Fitoplâncton/metabolismo
6.
Front Plant Sci ; 13: 1036258, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36570951

RESUMO

Introduction: Biological N2 fixation in feather-mosses is one of the largest inputs of new nitrogen (N) to boreal forest ecosystems; however, revealing the fate of newly fixed N within the bryosphere (i.e. bryophytes and their associated organisms) remains uncertain. Methods: Herein, we combined 15N tracers, high resolution secondary ion mass-spectrometry (NanoSIMS) and a molecular survey of bacterial, fungal and diazotrophic communities, to determine the origin and transfer pathways of newly fixed N2 within feather-moss (Pleurozium schreberi) and its associated microbiome. Results: NanoSIMS images reveal that newly fixed N2, derived from cyanobacteria, is incorporated into moss tissues and associated bacteria, fungi and micro-algae. Discussion: These images demonstrate that previous assumptions that newly fixed N2 is sequestered into moss tissue and only released by decomposition are not correct. We provide the first empirical evidence of new pathways for N2 fixed in feather-mosses to enter the boreal forest ecosystem (i.e. through its microbiome) and discuss the implications for wider ecosystem function.

7.
ISME J ; 16(10): 2348-2359, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35804051

RESUMO

Parasites are widespread and diverse in oceanic plankton and many of them infect single-celled algae for survival. How these parasites develop and scavenge energy within the host and how the cellular organization and metabolism of the host is altered remain open questions. Combining quantitative structural and chemical imaging with time-resolved transcriptomics, we unveil dramatic morphological and metabolic changes of the marine parasite Amoebophrya (Syndiniales) during intracellular infection, particularly following engulfment and digestion of nutrient-rich host chromosomes. Changes include a sequential acristate and cristate mitochondrion with a 200-fold increase in volume, a 13-fold increase in nucleus volume, development of Golgi apparatus and a metabolic switch from glycolysis (within the host) to TCA (free-living dinospore). Similar changes are seen in apicomplexan parasites, thus underlining convergent traits driven by metabolic constraints and the infection cycle. In the algal host, energy-producing organelles (plastid, mitochondria) remain relatively intact during most of the infection. We also observed that sugar reserves diminish while lipid droplets increase. Rapid infection of the host nucleus could be a "zombifying" strategy, allowing the parasite to digest nutrient-rich chromosomes and escape cytoplasmic defense, whilst benefiting from maintained carbon-energy production of the host cell.


Assuntos
Dinoflagellida , Microalgas , Parasitos , Animais , Carbono , Açúcares
8.
ISME J ; 16(10): 2406-2420, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35840731

RESUMO

The skeleton of reef-building coral harbors diverse microbial communities that could compensate for metabolic deficiencies caused by the loss of algal endosymbionts, i.e., coral bleaching. However, it is unknown to what extent endolith taxonomic diversity and functional potential might contribute to thermal resilience. Here we exposed Goniastrea edwardsi and Porites lutea, two common reef-building corals from the central Red Sea to a 17-day long heat stress. Using hyperspectral imaging, marker gene/metagenomic sequencing, and NanoSIMS, we characterized their endolithic microbiomes together with 15N and 13C assimilation of two skeletal compartments: the endolithic band directly below the coral tissue and the deep skeleton. The bleaching-resistant G. edwardsi was associated with endolithic microbiomes of greater functional diversity and redundancy that exhibited lower N and C assimilation than endoliths in the bleaching-sensitive P. lutea. We propose that the lower endolithic primary productivity in G. edwardsi can be attributed to the dominance of chemolithotrophs. Lower primary production within the skeleton may prevent unbalanced nutrient fluxes to coral tissues under heat stress, thereby preserving nutrient-limiting conditions characteristic of a stable coral-algal symbiosis. Our findings link coral endolithic microbiome structure and function to bleaching susceptibility, providing new avenues for understanding and eventually mitigating reef loss.


Assuntos
Antozoários , Microbiota , Animais , Branqueamento de Corais , Recifes de Corais , Metagenômica , Simbiose
9.
ISME J ; 16(9): 2076-2086, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35654830

RESUMO

The ability of organisms to combine autotrophy and heterotrophy gives rise to one of the most successful nutritional strategies on Earth: mixotrophy. Sponges are integral members of shallow-water ecosystems and many host photosynthetic symbionts, but studies on mixotrophic sponges have focused primarily on species residing in high-light environments. Here, we quantify the contribution of photoautotrophy to the respiratory demand and total carbon diet of the sponge Chondrilla caribensis, which hosts symbiotic cyanobacteria and lives in low-light environments. Although the sponge is net heterotrophic at 20 m water depth, photosynthetically fixed carbon potentially provides up to 52% of the holobiont's respiratory demand. When considering the total mixotrophic diet, photoautotrophy contributed an estimated 7% to total daily carbon uptake. Visualization of inorganic 13C- and 15N-incorporation using nanoscale secondary ion mass spectrometry (NanoSIMS) at the single-cell level confirmed that a portion of nutrients assimilated by the prokaryotic community was translocated to host cells. Photoautotrophy can thus provide an important supplemental source of carbon for sponges, even in low-light habitats. This trophic plasticity may represent a widespread strategy for net heterotrophic sponges hosting photosymbionts, enabling the host to buffer against periods of nutritional stress.


Assuntos
Poríferos , Energia Solar , Animais , Carbono , Dieta , Ecossistema , Água
10.
J Hazard Mater ; 429: 128326, 2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35101757

RESUMO

Strategies for remediation of per- and polyfluoroalkyl substances (PFAS) generally prioritise highly contaminated source areas. However, the mobility of PFAS in the environment often results in extensive low-level contamination of surface waters across broad areas. Constructed Floating Wetlands (CFWs) promote the growth of plants in buoyant structures where pollutants are assimilated into plant biomass. This study examined the hydroponic growth of Juncus krausii, Baumea articulata and Phragmites australis over a 28-day period for remediation of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) contaminated (0.2 µg/L to 30 µg/L) urban stormwater. With increasing PFOA and PFOS concentrations, accumulation in plant species increased although root and shoot distribution varied depending on PFAS functional group. Less PFOA than PFOS accumulated in plant roots (0.006-0.16 versus 0.008-0.68 µg/g), while more PFOA accumulated in the plant shoots (0.02-0.55 versus 0.01-0.16 µg/g) indicating translocation to upper plant portions. Phragmites australis accumulated the highest overall plant tissue concentrations of PFOA and PFOS. The NanoSIMS data demonstrated that PFAS associated with roots and shoots was absorbed and not just surface bound. These results illustrate that CFWs have the potential to be used to reduce PFAS contaminants in surface waters.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Fluorocarbonos/análise , Plantas , Água , Poluentes Químicos da Água/análise , Áreas Alagadas
11.
ISME J ; 16(4): 1110-1118, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34857934

RESUMO

Efficient nutrient cycling in the coral-algal symbiosis requires constant but limited nitrogen availability. Coral-associated diazotrophs, i.e., prokaryotes capable of fixing dinitrogen, may thus support productivity in a stable coral-algal symbiosis but could contribute to its breakdown when overstimulated. However, the effects of environmental conditions on diazotroph communities and their interaction with other members of the coral holobiont remain poorly understood. Here we assessed the effects of heat stress on diazotroph diversity and their contribution to holobiont nutrient cycling in the reef-building coral Stylophora pistillata from the central Red Sea. In a stable symbiotic state, we found that nitrogen fixation by coral-associated diazotrophs constitutes a source of nitrogen to the algal symbionts. Heat stress caused an increase in nitrogen fixation concomitant with a change in diazotroph communities. Yet, this additional fixed nitrogen was not assimilated by the coral tissue or the algal symbionts. We conclude that although diazotrophs may support coral holobiont functioning under low nitrogen availability, altered nutrient cycling during heat stress abates the dependence of the coral host and its algal symbionts on diazotroph-derived nitrogen. Consequently, the role of nitrogen fixation in the coral holobiont is strongly dependent on its nutritional status and varies dynamically with environmental conditions.


Assuntos
Antozoários , Animais , Antozoários/metabolismo , Recifes de Corais , Resposta ao Choque Térmico , Nitrogênio/metabolismo , Ciclo do Nitrogênio , Fixação de Nitrogênio , Simbiose
12.
Microbiome ; 9(1): 44, 2021 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-33583434

RESUMO

BACKGROUND: Sponges are increasingly recognised as key ecosystem engineers in many aquatic habitats. They play an important role in nutrient cycling due to their unrivalled capacity for processing both dissolved and particulate organic matter (DOM and POM) and the exceptional metabolic repertoire of their diverse and abundant microbial communities. Functional studies determining the role of host and microbiome in organic nutrient uptake and exchange, however, are limited. Therefore, we coupled pulse-chase isotopic tracer techniques with nanoscale secondary ion mass spectrometry (NanoSIMS) to visualise the uptake and translocation of 13C- and 15N-labelled dissolved and particulate organic food at subcellular level in the high microbial abundance sponge Plakortis angulospiculatus and the low microbial abundance sponge Halisarca caerulea. RESULTS: The two sponge species showed significant enrichment of DOM- and POM-derived 13C and 15N into their tissue over time. Microbial symbionts were actively involved in the assimilation of DOM, but host filtering cells (choanocytes) appeared to be the primary site of DOM and POM uptake in both sponge species overall, via pinocytosis and phagocytosis, respectively. Translocation of carbon and nitrogen from choanocytes to microbial symbionts occurred over time, irrespective of microbial abundance, reflecting recycling of host waste products by the microbiome. CONCLUSIONS: Here, we provide empirical evidence indicating that the prokaryotic communities of a high and a low microbial abundance sponge obtain nutritional benefits from their host-associated lifestyle. The metabolic interaction between the highly efficient filter-feeding host and its microbial symbionts likely provides a competitive advantage to the sponge holobiont in the oligotrophic environments in which they thrive, by retaining and recycling limiting nutrients. Sponges present a unique model to link nutritional symbiotic interactions to holobiont function, and, via cascading effects, ecosystem functioning, in one of the earliest metazoan-microbe symbioses. Video abstract.


Assuntos
Microbiota/fisiologia , Nutrientes/metabolismo , Poríferos/metabolismo , Poríferos/microbiologia , Simbiose , Animais , Carbono/metabolismo , Nitrogênio/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(5)2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33500354

RESUMO

Recurrent mass bleaching events are pushing coral reefs worldwide to the brink of ecological collapse. While the symptoms and consequences of this breakdown of the coral-algal symbiosis have been extensively characterized, our understanding of the underlying causes remains incomplete. Here, we investigated the nutrient fluxes and the physiological as well as molecular responses of the widespread coral Stylophora pistillata to heat stress prior to the onset of bleaching to identify processes involved in the breakdown of the coral-algal symbiosis. We show that altered nutrient cycling during heat stress is a primary driver of the functional breakdown of the symbiosis. Heat stress increased the metabolic energy demand of the coral host, which was compensated by the catabolic degradation of amino acids. The resulting shift from net uptake to release of ammonium by the coral holobiont subsequently promoted the growth of algal symbionts and retention of photosynthates. Together, these processes form a feedback loop that will gradually lead to the decoupling of carbon translocation from the symbiont to the host. Energy limitation and altered symbiotic nutrient cycling are thus key factors in the early heat stress response, directly contributing to the breakdown of the coral-algal symbiosis. Interpreting the stability of the coral holobiont in light of its metabolic interactions provides a missing link in our understanding of the environmental drivers of bleaching and may ultimately help uncover fundamental processes underpinning the functioning of endosymbioses in general.


Assuntos
Antozoários/fisiologia , Resposta ao Choque Térmico/fisiologia , Nutrientes , Simbiose/fisiologia , Aminoácidos/metabolismo , Compostos de Amônio/metabolismo , Animais , Antozoários/genética , Carbono/metabolismo , Regulação da Expressão Gênica , Modelos Biológicos , Nitrogênio/metabolismo , Estresse Oxidativo , Fotossíntese
14.
ISME Commun ; 1(1): 72, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36765158

RESUMO

Roots are a primary source of organic carbon input in most soils. The consumption of living and detrital root inputs involves multi-trophic processes and multiple kingdoms of microbial life, but typical microbial ecology studies focus on only one or two major lineages. We used Illumina shotgun RNA sequencing to conduct PCR-independent SSU rRNA community analysis ("community RNA-Seq") and simultaneously assess the bacteria, archaea, fungi, and microfauna surrounding both living and decomposing roots of the annual grass, Avena fatua. Plants were grown in 13CO2-labeled microcosms amended with 15N-root litter to identify the preferences of rhizosphere organisms for root exudates (13C) versus decaying root biomass (15N) using NanoSIMS microarray imaging (Chip-SIP). When litter was available, rhizosphere and bulk soil had significantly more Amoebozoa, which are potentially important yet often overlooked top-down drivers of detritusphere community dynamics and nutrient cycling. Bulk soil containing litter was depleted in Actinobacteria but had significantly more Bacteroidetes and Proteobacteria. While Actinobacteria were abundant in the rhizosphere, Chip-SIP showed Actinobacteria preferentially incorporated litter relative to root exudates, indicating this group's more prominent role in detritus elemental cycling in the rhizosphere. Our results emphasize that decomposition is a multi-trophic process involving complex interactions, and our methodology can be used to track the trajectory of carbon through multi-kingdom soil food webs.

15.
Microb Ecol ; 81(4): 864-873, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33145650

RESUMO

Fine root endophytes (FRE) were traditionally considered a morphotype of arbuscular mycorrhizal fungi (AMF), but recent genetic studies demonstrate that FRE belong within the subphylum Mucoromycotina, rather than in the subphylum Glomeromycotina with the AMF. These findings prompt enquiry into the fundamental ecology of FRE and AMF. We sampled FRE and AMF in roots of Trifolium subterraneum from 58 sites across temperate southern Australia. We investigated the environmental drivers of composition, richness, and root colonization of FRE and AMF by using structural equation modelling and canonical correspondence analyses. Root colonization by FRE increased with increasing temperature and rainfall but decreased with increasing phosphorus (P). Root colonization by AMF increased with increasing soil organic carbon but decreased with increasing P. Richness of FRE decreased with increasing temperature and soil pH. Richness of AMF increased with increasing temperature and rainfall but decreased with increasing soil aluminium (Al) and pH. Aluminium, soil pH, and rainfall were, in decreasing order, the strongest drivers of community composition of FRE; they were also important drivers of community composition of AMF, along with temperature, in decreasing order: rainfall, Al, temperature, and soil pH. Thus, FRE and AMF showed the same responses to some (e.g. soil P, soil pH) and different responses to other (e.g. temperature) key environmental factors. Overall, our data are evidence for niche differentiation among these co-occurring mycorrhizal associates.


Assuntos
Micorrizas , Carbono , Endófitos/genética , Fungos , Raízes de Plantas , Solo , Microbiologia do Solo
16.
Proc Natl Acad Sci U S A ; 117(27): 15827-15836, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571911

RESUMO

Bromine and peroxidasin (an extracellular peroxidase) are essential for generating sulfilimine cross-links between a methionine and a hydroxylysine within collagen IV, a basement membrane protein. The sulfilimine cross-links increase the structural integrity of basement membranes. The formation of sulfilimine cross-links depends on the ability of peroxidasin to use bromide and hydrogen peroxide substrates to produce hypobromous acid (HOBr). Once a sulfilimine cross-link is created, bromide is released into the extracellular space and becomes available for reutilization. Whether the HOBr generated by peroxidasin is used very selectively for creating sulfilimine cross-links or whether it also causes oxidative damage to bystander molecules (e.g., generating bromotyrosine residues in basement membrane proteins) is unclear. To examine this issue, we used nanoscale secondary ion mass spectrometry (NanoSIMS) imaging to define the distribution of bromine in mammalian tissues. We observed striking enrichment of bromine (79Br, 81Br) in basement membranes of normal human and mouse kidneys. In peroxidasin knockout mice, bromine enrichment of basement membranes of kidneys was reduced by ∼85%. Proteomic studies revealed bromination of tyrosine-1485 in the NC1 domain of α2 collagen IV from kidneys of wild-type mice; the same tyrosine was brominated in collagen IV from human kidney. Bromination of tyrosine-1485 was reduced by >90% in kidneys of peroxidasin knockout mice. Thus, in addition to promoting sulfilimine cross-links in collagen IV, peroxidasin can also brominate a bystander tyrosine. Also, the fact that bromine enrichment is largely confined to basement membranes implies that peroxidasin activity is largely restricted to basement membranes in mammalian tissues.


Assuntos
Membrana Basal/metabolismo , Bromo/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Peroxidase/metabolismo , Animais , Biópsia , Bromatos/metabolismo , Brometos , Células Cultivadas , Colágeno Tipo IV/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Iminas/metabolismo , Rim/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteômica , Peroxidasina
17.
Environ Sci Technol ; 53(23): 13720-13731, 2019 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-31697487

RESUMO

The formation of water-stable aggregates in finely textured and polymineral magnetite Fe ore tailings is one of the critical processes in eco-engineering tailings into soil-like substrates as a new way to rehabilitate the tailings. Organic matter (OM) amendment and plant colonization are considered to be effective in enhancing water-stable aggregation, but the underlying mechanisms have not yet been elucidated. The present study aimed to characterize detailed changes in physicochemistry, Fe-bearing mineralogy, and organo-mineral interactions in magnetite Fe ore tailings subject to the combined treatments of OM amendment and plant colonization, by employing various microspectroscopic methods, including synchrotron-based X-ray absorption fine structure spectroscopy and nanoscale secondary ion mass spectroscopy. The results indicated that OM amendment and plant colonization neutralized the tailings' alkaline pH and facilitated water-stable aggregate formation. The resultant aggregates were consequences of ligand-promoted bioweathering of primary Fe-bearing minerals (mainly biotite-like minerals) and the formation of secondary Fe-rich mineral gels. Especially, the sequestration of OM (rich in carboxyl, aromatic, and/or carbonyl C) by Fe-rich minerals via ligand-exchange and/or hydrophobic interactions contributed to the aggregation. These findings have uncovered the processes and mechanisms of water-stable aggregate formation driven by OM amendment and plant colonization in alkaline Fe ore tailings, thus providing important basis for eco-engineered pedogenesis in the tailings.


Assuntos
Sequestro de Carbono , Óxido Ferroso-Férrico , Minerais , Solo , Água
18.
Ecol Lett ; 22(12): 2111-2119, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31621153

RESUMO

In contrast to the situation in plants inhabiting most of the world's ecosystems, mycorrhizal fungi are usually absent from roots of the only two native vascular plant species of maritime Antarctica, Deschampsia antarctica and Colobanthus quitensis. Instead, a range of ascomycete fungi, termed dark septate endophytes (DSEs), frequently colonise the roots of these plant species. We demonstrate that colonisation of Antarctic vascular plants by DSEs facilitates not only the acquisition of organic nitrogen as early protein breakdown products, but also as non-proteinaceous d-amino acids and their short peptides, accumulated in slowly-decomposing organic matter, such as moss peat. Our findings suggest that, in a warming maritime Antarctic, this symbiosis has a key role in accelerating the replacement of formerly dominant moss communities by vascular plants, and in increasing the rate at which ancient carbon stores laid down as moss peat over centuries or millennia are returned to the atmosphere as CO2 .


Assuntos
Magnoliopsida , Micorrizas , Regiões Antárticas , Ecossistema , Simbiose
19.
ISME J ; 13(3): 707-719, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30353038

RESUMO

Seagrasses thrive in anoxic sediments where sulphide can accumulate to phytotoxic levels. So how do seagrasses persist in this environment? Here, we propose that radial oxygen loss (ROL) from actively growing root tips protects seagrasses from sulphide intrusion not only by abiotically oxidising sulphides in the rhizosphere of young roots, but also by influencing the abundance and spatial distribution of sulphate-reducing and sulphide-oxidising bacteria. We used a novel multifaceted approach combining imaging techniques (confocal fluorescence in situ hybridisation, oxygen planar optodes, and sulphide diffusive gradients in thin films) with microbial community profiling to build a complete picture of the microenvironment of growing roots of the seagrasses Halophila ovalis and Zostera muelleri. ROL was restricted to young root tips, indicating that seagrasses will have limited ability to influence sulphide oxidation in bulk sediments. On the microscale, however, ROL corresponded with decreased abundance of potential sulphate-reducing bacteria and decreased sulphide concentrations in the rhizosphere surrounding young roots. Furthermore, roots leaking oxygen had a higher abundance of sulphide-oxidising cable bacteria; which is the first direct observation of these bacteria on seagrass roots. Thus, ROL may enhance both abiotic and bacterial sulphide oxidation and restrict bacterial sulphide production around vulnerable roots, thereby helping seagrasses to colonise sulphide-rich anoxic sediments.


Assuntos
Bactérias/classificação , Hydrocharitaceae/microbiologia , Oxigênio/metabolismo , Sulfetos/metabolismo , Zosteraceae/microbiologia , Bactérias/genética , Bactérias/metabolismo , Biodiversidade , Sedimentos Geológicos/química , Hydrocharitaceae/fisiologia , Oxirredução , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Rizosfera , Estresse Fisiológico , Zosteraceae/fisiologia
20.
Elife ; 62017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28371617

RESUMO

Phytoplankton-bacteria interactions drive the surface ocean sulfur cycle and local climatic processes through the production and exchange of a key compound: dimethylsulfoniopropionate (DMSP). Despite their large-scale implications, these interactions remain unquantified at the cellular-scale. Here we use secondary-ion mass spectrometry to provide the first visualization of DMSP at sub-cellular levels, tracking the fate of a stable sulfur isotope (34S) from its incorporation by microalgae as inorganic sulfate to its biosynthesis and exudation as DMSP, and finally its uptake and degradation by bacteria. Our results identify for the first time the storage locations of DMSP in microalgae, with high enrichments present in vacuoles, cytoplasm and chloroplasts. In addition, we quantify DMSP incorporation at the single-cell level, with DMSP-degrading bacteria containing seven times more 34S than the control strain. This study provides an unprecedented methodology to label, retain, and image small diffusible molecules, which can be transposable to other symbiotic systems.


Assuntos
Organismos Aquáticos/química , Organismos Aquáticos/metabolismo , Bactérias/química , Bactérias/metabolismo , Microalgas/química , Microalgas/metabolismo , Compostos de Sulfônio/análise , Marcação por Isótopo , Espectrometria de Massa de Íon Secundário , Isótopos de Enxofre/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...