Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 15(12)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37370798

RESUMO

BACKGROUND: Despite encouraging anti-tumour activity in lung cancer, anti-PD-1 therapy has encountered increasing resistance to treatment. Several companion diagnostic assays have been performed to identify patients who may benefit from this immunotherapy and to adapt this therapy in case of acquired resistance. METHODS: A large panel of methods was used for the analysis of expression and methylation levels of miRNAs (qPCR, MemiRIP, …), protein/miRNA interactions (CLIP, oligo pull-down, …), and protein-protein interactions (CoIP) in cells and/or blood samples. RESULTS: Our work highlights that the saturation of PD-1 by anti-PD1 therapies induces an immune escape phenomenon due to the overexpression of IGSF11 following adenosine methylation of miR-125a-5p. Mechanistically, we identify METTL3/KHDRBS3 and HuR as two crucial players in the methylation and the loss of the repressive function of this miRNA. Finally, our work shows that the adenosine methylation of miR-125a-5p is analyzable from EVs/exosomes from longitudinal blood samples and that such EVs/exosomes modulate the IGSF11/VSIG3 expression in lung cancer cells to promote an immune escape phenomenon. CONCLUSIONS: Our data provide a biomarker (m6A-miR-125a-5p level) and two therapeutic solutions (anti-IGSF11 antibody and METTL3 inhibitor) that could potentially address the anti-PD1 therapy failure in the context of precision and personalized medicine.

2.
Epigenomes ; 6(4)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36278678

RESUMO

Background: Deregulation of DNA methylation/demethylation reactions may be the source of C > T mutation via active deamination of 5-methylcytosine to thymine. Exposome, that is to say, the totality of exposures to which an individual is subjected during their life, can deregulate these reactions. Thus, one may wonder whether the exposome can induce C > T mutations in the breast cancer-predisposing gene PALB2. Methods: Our work is based on the exposure of MCF10A mammary epithelial cells to seven compounds of our exposome (folate, Diuron, glyphosate, PFOA, iron, zinc, and ascorbic acid) alone or in cocktail. The qMSRE and RMS techniques were used to study the impact of these exposures on the level of methylation and mutation of the PALB2 gene. Results: Here, we have found that exposome compounds (nutriments, ions, pollutants) promoting the cytosine methylation and the 5-methylcytosine deamination have the ability to promote a specific C > T mutation in the PALB2 gene. Interestingly, we also noted that the addition of exposome compounds promoting the TET-mediated conversion of 5-methylcytosine (Ascorbic acid and iron) abrogates the presence of C > T mutation in the PALB2 gene. Conclusions: Our study provides a proof of concept supporting the idea that exposomes can generate genetic mutation by affecting DNA methylation/demethylation.

3.
Cell Death Dis ; 11(12): 1048, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33311449

RESUMO

Anti-PD1 immunotherapy, as a single agent or in combination with standard chemotherapies, has significantly improved the outcome of many patients with cancers. However, resistance to anti-PD1 antibodies often decreases the long-term therapeutic benefits. Despite this observation in clinical practice, the molecular mechanisms associated with resistance to anti-PD1 antibody therapy have not yet been elucidated. To identify the mechanisms of resistance associated with anti-PD1 antibody therapy, we developed cellular models including purified T cells and different cancer cell lines from glioblastoma, lung adenocarcinoma, breast cancer and ovarian carcinoma. A murine model of lung cancer was also used. Longitudinal blood samples of patients treated with anti-PD1 therapy were also used to perform a proof-of-concept study of our findings. We found that anti-PD1 exposure of T-cell promotes an enrichment of exosomal miRNA-4315. We also noted that exosomal miRNA-4315 induced a phenomenon of apopto-resistance to conventional chemotherapies in cancer cells receiving exosomal miRNA-4315. At molecular level, we discern that the apopto-resistance phenomenon was associated with the miRNA-4315-mediated downregulation of Bim, a proapoptotic protein. In cellular and mice models, we observed that the BH3 mimetic agent ABT263 circumvented this resistance. A longitudinal study using patient blood showed that miRNA-4315 and cytochrome c can be used to define the time period during which the addition of ABT263 therapy may effectively increase cancer cell death and bypass anti-PD1 resistance.This work provides a blood biomarker (exosomal miRNA-4315) for patient stratification developing a phenomenon of resistance to anti-PD1 antibody therapy and also identifies a therapeutic alternative (the use of a BH3 mimetic drug) to limit this resistance phenomenon.


Assuntos
Apoptose , Proteína 11 Semelhante a Bcl-2/metabolismo , Exossomos/metabolismo , MicroRNAs/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Linfócitos T/metabolismo , Compostos de Anilina/farmacologia , Compostos de Anilina/uso terapêutico , Animais , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/sangue , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Humanos , Camundongos Nus , MicroRNAs/genética , Neoplasias/sangue , Neoplasias/patologia , Fenótipo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Linfócitos T/efeitos dos fármacos , Temozolomida/farmacologia , Temozolomida/uso terapêutico
4.
Mol Ther Nucleic Acids ; 22: 72-83, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32916600

RESUMO

MicroRNAs (miRNAs or miRs) play crucial roles in biological and pathological processes. Some miRNAs also appear as promising biomarkers and therapeutic tools. However, the epitranscriptomic regulation of miRNAs is not yet fully elucidated in all of their fields of application. We report that adenosine methylation of miR-200b-3p inhibits its repressive function toward its mRNA targets such as XIAP by blocking the formation of the miRNA/3' UTRmRNA duplex. Our data indicate that the adenosine methylation of miR-200b-3p is associated with the survival of glioblastoma patients. Collectively, our data support the idea that the adenosine methylation of miR-200b-3p can be used as a prodrug having a selective cytotoxicity against cancer cells (while being harmless to peripheral blood mononuclear cells [PBMCs], astrocytes, neurons, and hepatocytes).

5.
Epigenomics ; 12(5): 397-408, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32267172

RESUMO

Aim: We here hypothesized that tumor-derived exosomal miRNA (TexomiR) released from irradiated tumors may play a role in the tumor cells escape to natural killer (NK) cells. Materials & methods: Our study included the use of different cancer cell lines, blood biopsies of xenograph mice model and patients treated with radiotherapy. Results: The irradiation of cancer cells promotes the TET2-mediated demethylation of miR-378 promoter, miR-378a-3p overexpression and its loading in exosomes, inducing the decrease of granzyme-B (GZMB) secretion by NK cells. An inverse correlation between TexomiR-378a-3p and GZMB was observed in murine and human blood samples. Conclusion: Our work identifies TexomiR-378a-3p as a molecular signature associated with the loss of NK cells cytotoxicity via the decrease of GZMB expression upon radiotherapy.


Assuntos
Exossomos/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos da radiação , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , MicroRNAs/genética , Animais , Linhagem Celular Tumoral , Citotoxicidade Imunológica/genética , Citotoxicidade Imunológica/efeitos da radiação , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Dioxigenases , Expressão Gênica , Granzimas/metabolismo , Humanos , Camundongos , Neoplasias/genética , Neoplasias/metabolismo , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas/metabolismo , Radioterapia
6.
Mol Cancer ; 19(1): 36, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32098627

RESUMO

BACKGROUND: Literature reports that mature microRNA (miRNA) can be methylated at adenosine, guanosine and cytosine. However, the molecular mechanisms involved in cytosine methylation of miRNAs have not yet been fully elucidated. Here we investigated the biological role and underlying mechanism of cytosine methylation in miRNAs in glioblastoma multiforme (GBM). METHODS: RNA immunoprecipitation with the anti-5methylcytosine (5mC) antibody followed by Array, ELISA, dot blot, incorporation of a radio-labelled methyl group in miRNA, and miRNA bisulfite sequencing were perfomred to detect the cytosine methylation in mature miRNA. Cross-Linking immunoprecipiation qPCR, transfection with methylation/unmethylated mimic miRNA, luciferase promoter reporter plasmid, Biotin-tagged 3'UTR/mRNA or miRNA experiments and in vivo assays were used to investigate the role of methylated miRNAs. Finally, the prognostic value of methylated miRNAs was analyzed in a cohorte of GBM pateints. RESULTS: Our study reveals that a significant fraction of miRNAs contains 5mC. Cellular experiments show that DNMT3A/AGO4 methylated miRNAs at cytosine residues inhibit the formation of miRNA/mRNA duplex and leading to the loss of their repressive function towards gene expression. In vivo experiments show that cytosine-methylation of miRNA abolishes the tumor suppressor function of miRNA-181a-5p miRNA for example. Our study also reveals that cytosine-methylation of miRNA-181a-5p results is associated a poor prognosis in GBM patients. CONCLUSION: Together, our results indicate that the DNMT3A/AGO4-mediated cytosine methylation of miRNA negatively.


Assuntos
Biomarcadores Tumorais/genética , Citosina/química , Metilação de DNA , Glioblastoma/patologia , MicroRNAs/genética , Animais , Apoptose , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , DNA Metiltransferase 3A , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Prognóstico , Regiões Promotoras Genéticas , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Epigenomics ; 12(2): 145-155, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31916450

RESUMO

Cancer numbers increasing, cases heterogeneity and the drug resistance emergence have pushed scientists to search for innovative solutions for patients and epimutations can be one. Methylated DNA, modified nucleosomes and noncoding RNAs are found in all cells, including tumor cells. They are intracellular actors but also have intercellular communication roles, being released in extracellular environment and in different body fluids. Here, we reviewed current literature on the use of these blood circulating epimarks in cancer monitoring. What stands out is that epimarkers must be considered as 'real time' images of the tumor, and can be isolated without invasive methods. In the future, the real challenge lies in the development of specific, sensitive, fast and clinically applicable detection and analysis methods of epimarkers.


Assuntos
Biomarcadores Tumorais/sangue , DNA Tumoral Circulante/sangue , Epigênese Genética , Neoplasias/sangue , Nucleossomos/metabolismo , RNA não Traduzido/sangue , Biomarcadores Tumorais/metabolismo , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/metabolismo , DNA Tumoral Circulante/metabolismo , Metilação de DNA , Código das Histonas , Humanos , Neoplasias/metabolismo
8.
Clin Epigenetics ; 11(1): 159, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727122

RESUMO

BACKGROUND: Diuron is an environmental component listed as a likely human carcinogen. Several other studies report that diuron can be oncogenic for bladder, urothelial, skin, and mammary cells. No study mentions the putative effect of diuron on the glioma occurrence. OBJECTIVES: We here wanted to investigate the effects of diuron exposure on the glioma occurrence while wishing to incriminate a putative implication of DNA methylation modulation in this process. METHODS: In in vivo model of glioma, diuron exposure was firstly compared or combined with oncogenic overexpressions already known to promote gliomagenesis. ELISA quantifying the 5-methylcytosine level on DNA was performed to examine the global DNA methylation level. Quantitative real-time polymerase chain reaction and proximity ligation in situ assay were performed to identify the molecular causes of the diuron-induced changes of DNA methylation. The signatures diuron-induced changes of DNA methylation were analyzed in a cohort of 23 GBM patients. RESULTS: Diuron exposure is not sufficient to promote glioma, such as the oncogenic overexpression of Akt or Ras. However, the combination of diuron exposure and Akt overexpression promotes glioma. We observed that the diuron/Akt-induced glioma is characterized by three phenotypic signatures characterizing cancer cells: a global DNA hypomethylation, a loss of sensitivity to cell death induction, and a gain of signals of immune escape. Our data associated these phenotypes with three aberrant DNA methylation signatures: the LLT1, PD-L1, and Bcl-w hypomethylations. Strikingly, we observed that these three concomitant hypomethylations were only observed in GBM patients having a potential exposure to diuron via their professional activity. CONCLUSIONS: As single player, diuron is not an oncogenic of glioma, but it can participate to the glioma formation in association with other events (also devoid of oncogenic property as single player) such as Akt overexpression.


Assuntos
Neoplasias Encefálicas/patologia , Metilação de DNA/efeitos dos fármacos , Diurona/efeitos adversos , Glioma/genética , Glioma/patologia , Proteínas Proto-Oncogênicas c-akt/genética , 5-Metilcitosina/análise , Animais , Proteínas Reguladoras de Apoptose/genética , Antígeno B7-H1/genética , Neoplasias Encefálicas/induzido quimicamente , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glioma/induzido quimicamente , Humanos , Lectinas Tipo C/genética , Camundongos , Transplante de Neoplasias , Receptores de Superfície Celular/genética , Regulação para Cima
9.
Front Genet ; 10: 885, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31611907

RESUMO

The acknowledgment that pollutants might influence the epigenome raises serious concerns regarding their long-term impact on the development of chronic diseases. The herbicide glyphosate has been scrutinized for an impact on cancer incidence, but reports demonstrate the difficulty of linking estimates of exposure and response analysis. An approach to better apprehend a potential risk impact for cancer is to follow a synergistic approach, as cancer rarely occurs in response to one risk factor. The known influence of glyphosate on estrogen-regulated pathway makes it a logical target of investigation in breast cancer research. We have used nonneoplastic MCF10A cells in a repeated glyphosate exposure pattern over 21 days. Glyphosate triggered a significant reduction in DNA methylation, as shown by the level of 5-methylcytosine DNA; however, in contrast to strong demethylating agent and cancer promoter UP peptide, glyphosate-treated cells did not lead to tumor development. Whereas UP acts through a DNMT1/PCNA/UHRF1 pathway, glyphosate triggered increased activity of ten-eleven translocation (TET)3. Combining glyphosate with enhanced expression of microRNA (miR) 182-5p associated with breast cancer induced tumor development in 50% of mice. Culture of primary cells from resected tumors revealed a luminal B (ER+/PR-/HER2-) phenotype in response to glyphosate-miR182-5p exposure with sensitivity to tamoxifen and invasive and migratory potentials. Tumor development could be prevented either by specifically inhibiting miR 182-5p or by treating glyphosate-miR 182-5p-cells with dimethyloxallyl glycine, an inhibitor of TET pathway. Looking for potential epigenetic marks of TET-mediated gene regulation under glyphosate exposure, we identified MTRNR2L2 and DUX4 genes, the hypomethylation of which was sustained even after stopping glyphosate exposure for 6 weeks. Our findings reveal that low pressure but sustained DNA hypomethylation occurring via the TET pathway primes cells for oncogenic response in the presence of another potential risk factor. These results warrant further investigation of glyphosate-mediated breast cancer risk.

10.
Mol Ther Nucleic Acids ; 13: 642-650, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30497054

RESUMO

In the last decade, microRNAs (miRs) have been described as biomarkers and therapeutic agents. Based on this finding, our aim here is to know if (1) miRNA-370-3p can be used as a biomarker associated with a favorable survival and if (2) miRNA-370-3p can be used as a therapeutic tool that increases the efficiency of standard anti-GBM treatment. A first approach using the data available on the "Prognostic miRNA Database" indicated that the expression level of miRNA-370-3p in GBM (T-miR-370-3p) is not associated with a prognosis value for survival. A second approach quantifying the expression level of cell-free circulating miRNA-370-3p (cfc-miR-370-3p) also indicated that cfc-miR-370-3p is not associated with a prognosis value for survival. To investigate whether miR-370-3p can be used in vivo to increase the anti-GBM effect of TMZ, we then used the model of LN18-induced GBMs in mice. Our data indicated that the miRNA-370-3p/TMZ treatment was two times more efficient than the TMZ treatment for decreasing the tumor volume. In addition, our study correlated the decrease of tumor volume induced by the miRNA-370-3p/TMZ treatment with the decrease in FOXM1 and MGMT (i.e., two targets of miR-370-3p). Our data thus support the idea that miR-370-3p could be used as therapeutic tool for anti-glioblastoma therapy, but not as a biomarker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA