Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(10): 11820-11828, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38497016

RESUMO

We presented the results of various aspects related to structural, elastic, electronic, dynamic, and magnetic parameters of cubic perovskite CeCrO3 by means of the full-potential linearized augmented plane wave (FP-LAPW) approach. The calculation of the unit cell volume against the total energy curve confirms that CeCrO3 exhibits higher energetic stability in the ferromagnetic (FM) order. Calculated structural aspects at equilibrium demonstrate excellent similarity to present information, lending credibility to our results. Moreover, monocrystalline elastic constants have been analyzed numerically. These constants provide insights into several related properties, including elastic anisotropy, mechanical stability, and several polycrystalline elastic aspects. Furthermore, the phonon dispersion curves obtained from our calculations reveal the existence of soft modes, which suggests the potential metastability of CeCrO3. Through an analysis of the energy band dispersions, the half-metallic nature of this material is confirmed, such as Eg = 3.00 and 3.13 eV for the HM state within generalized gradient approximations Perdew-Burke-Ernzerhof (GGA-PBE) and Tran-Blaha modified Becke-Johnson (TB-mBJ) calculations, respectively, as well as the FM total magnetic moment of 4.000 µB. Partial density of states (PDOS) aided in identifying the electronic states that contribute to the energy bands. Finally, the computed total magnetic moment aligns fit the theoretical findings available in the literature.

2.
Artigo em Inglês | MEDLINE | ID: mdl-37871596

RESUMO

In this work, we have conducted an ab initio computational research of the pressure impact on the structural, elastic, thermodynamic, electronic, and optical properties of Be-based fluoroperovskite XBeF3 (X= K, Rb) compounds by using GGA+ PBEsol functional based on DFT in the CASTEP Package. These compounds' ground state characteristics were examined, including the lattice parameters, coefficient compressibility (B), and its pressure derivative(B'). Structural characterization shows that these compounds keep a cubic crystal structure with the impact of stress till 18 GPa. In addition, we computed elastic constants, Young's modulus (E), shear modulus (G), Poisson's ratio (σ), and the anisotropy factor (A). As the elastic stiffness parameters comply with the Born stability criterion, the examined phases are mechanically stable. The ductility of phases XBeF3 (X= K, Rb) has been assured from the high coefficient compressibility (B) and Pugh's ratio values. Furthermore, we determined the thermodynamic behavior of XBeF3 (X= K, Rb) through the quasi-harmonic Debye model. The electronic band structure and DOS (Density of States) were studied, which provide information on the insulator properties of the two compounds. Also, we studied various optical properties of the materials including: refractive index, optical reflectivity, coefficient of absorption, both real and imaginary parts of dielectric function and lastly the energy loss function. On the basis of these reported studies of these materials, their applications in many modern electronic devices can be predicted.

3.
IUCrJ ; 4(Pt 6): 758-768, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29123678

RESUMO

Magnetic Heusler compounds (MHCs) have recently attracted great attention since these types of material provide novel functionalities in spintronic and magneto-electronic devices. Among the MHCs, some compounds have been predicted to be spin-filter semiconductors [also called magnetic semiconductors (MSs)], spin-gapless semiconductors (SGSs) or half-metals (HMs). In this work, by means of first-principles calculations, it is demonstrated that rare earth-based equiatomic quaternary Heusler (EQH) compounds with the formula MCoVZ (M = Lu, Y; Z = Si, Ge) are new spin-filter semiconductors with total magnetic moments of 3 µB. Furthermore, under uniform strain, there are physical transitions from spin-filter semiconductor (MS) → SGS → HM for EQH compounds with the formula LuCoVZ, and from HM → SGS → MS → SGS → HM for EQH compounds with the formula YCoVZ. Remarkably, for YCoVZ EQH compounds there are not only diverse physical transitions, but also different types of spin-gapless feature that can be observed with changing lattice constants. The structural stability of these four EQH compounds is also examined from the points of view of formation energy, cohesive energy and mechanical behaviour. This work is likely to inspire consideration of rare earth-based EQH compounds for application in future spintronic and magneto-electronic devices.

4.
Sci Rep ; 7(1): 16183, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170544

RESUMO

In this paper, we have investigated the structural, electronic, magnetic, half-metallic, mechanical, and thermodynamic properties of the equiatomic quaternary Heusler (EQH) compound FeCrRuSi using the density functional theory (DFT) and the quasi-harmonic Debye model. Our results reveal that FeCrRuSi is a half-metallic material (HMM) with a total magnetic moment of 2.0 µB in agreement with the well-known Slater-Pauling rule Mt = Zt - 24. Furthermore, the origin of the half-metallic band gap in FeCrRuSi is well studied through a schematic diagram of the possible d-d hybridization between Fe, Cr and Ru elements. The half-metallic behavior of FeCrRuSi can be maintained in a relatively wide range of variations of the lattice constant (5.5-5.8 Å) under uniform strain and the c/a ratio (0.96-1.05) under tetragonal distortion. The calculated phonon dispersion, cohesive and formation energies, and mechanical properties reveal that FeCrRuSi is stable with an EQH structure. Importantly, the compound of interest has been prepared and is found to exist in an EQH type structure with the presence of some B2 disorder. Moreover, the thermodynamic properties, such as the thermal expansion coefficient α, the heat capacity CV, the Grüneisen constant γ, and the Debye temperature ΘD are calculated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA