Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood ; 142(19): 1622-1632, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37562000

RESUMO

A critical regulatory role of hematopoietic stem cell (HSC) vascular niches in the bone marrow has been implicated to occur through endothelial niche cell expression of KIT ligand. However, endothelial-derived KIT ligand is expressed in both a soluble and membrane-bound form and not unique to bone marrow niches, and it is also systemically distributed through the circulatory system. Here, we confirm that upon deletion of both the soluble and membrane-bound forms of endothelial-derived KIT ligand, HSCs are reduced in mouse bone marrow. However, the deletion of endothelial-derived KIT ligand was also accompanied by reduced soluble KIT ligand levels in the blood, precluding any conclusion as to whether the reduction in HSC numbers reflects reduced endothelial expression of KIT ligand within HSC niches, elsewhere in the bone marrow, and/or systemic soluble KIT ligand produced by endothelial cells outside of the bone marrow. Notably, endothelial deletion, specifically of the membrane-bound form of KIT ligand, also reduced systemic levels of soluble KIT ligand, although with no effect on stem cell numbers, implicating an HSC regulatory role primarily of soluble rather than membrane KIT ligand expression in endothelial cells. In support of a role of systemic rather than local niche expression of soluble KIT ligand, HSCs were unaffected in KIT ligand deleted bones implanted into mice with normal systemic levels of soluble KIT ligand. Our findings highlight the need for more specific tools to unravel niche-specific roles of regulatory cues expressed in hematopoietic niche cells in the bone marrow.


Assuntos
Células Endoteliais , Fator de Células-Tronco , Camundongos , Animais , Fator de Células-Tronco/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Medula Óssea/metabolismo , Osso e Ossos , Nicho de Células-Tronco , Células da Medula Óssea/metabolismo
2.
J Immunol ; 201(11): 3307-3319, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366956

RESUMO

Within the hematopoietic system, the Notch pathway is critical for promoting thymic T cell development and suppressing the B and myeloid lineage fates; however, its impact on NK lymphopoiesis is less understood. To study the role of Notch during NK cell development in vivo, we investigated different NK cell compartments and function in Rbp-Jkfl/flVav-Cretg/+ mice, in which Rbp-Jk, the major transcriptional effector of canonical Notch signaling, was specifically deleted in all hematopoietic cells. Peripheral conventional cytotoxic NK cells in Rbp-Jk-deleted mice were significantly reduced and had an activated phenotype. Furthermore, the pool of early NK cell progenitors in the bone marrow was decreased, whereas immature NK cells were increased, leading to a block in NK cell maturation. These changes were cell intrinsic as the hematopoietic chimeras generated after transplantation of Rbp-Jk-deficient bone marrow cells had the same NK cell phenotype as the Rbp-Jk-deleted donor mice, whereas the wild-type competitors did not. The expression of several crucial NK cell regulatory pathways was significantly altered after Rbp-Jk deletion. Together, these results demonstrate the involvement of canonical Notch signaling in regulation of multiple stages of NK cell development.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Células Matadoras Naturais/fisiologia , Células Progenitoras Linfoides/fisiologia , Linfopoese , Receptores Notch/metabolismo , Animais , Diferenciação Celular , Células Cultivadas , Quimera , Citotoxicidade Imunológica , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
3.
Cancer Cell ; 33(2): 274-291.e8, 2018 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-29438697

RESUMO

Lympho-myeloid restricted early thymic progenitors (ETPs) are postulated to be the cell of origin for ETP leukemias, a therapy-resistant leukemia associated with frequent co-occurrence of EZH2 and RUNX1 inactivating mutations, and constitutively activating signaling pathway mutations. In a mouse model, we demonstrate that Ezh2 and Runx1 inactivation targeted to early lymphoid progenitors causes a marked expansion of pre-leukemic ETPs, showing transcriptional signatures characteristic of ETP leukemia. Addition of a RAS-signaling pathway mutation (Flt3-ITD) results in an aggressive leukemia co-expressing myeloid and lymphoid genes, which can be established and propagated in vivo by the expanded ETPs. Both mouse and human ETP leukemias show sensitivity to BET inhibition in vitro and in vivo, which reverses aberrant gene expression induced by Ezh2 inactivation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Leucemia Mieloide Aguda/genética , Mutação/genética , Animais , Regulação Leucêmica da Expressão Gênica , Camundongos Knockout , Células Mieloides/metabolismo , Transdução de Sinais/genética , Células-Tronco
4.
Blood ; 131(15): 1712-1719, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29339402

RESUMO

Although an essential role for canonical Notch signaling in generation of hematopoietic stem cells in the embryo and in thymic T-cell development is well established, its role in adult bone marrow (BM) myelopoiesis remains unclear. Some studies, analyzing myeloid progenitors in adult mice with inhibited Notch signaling, implicated distinct roles of canonical Notch signaling in regulation of progenitors for the megakaryocyte, erythroid, and granulocyte-macrophage cell lineages. However, these studies might also have targeted other pathways. Therefore, we specifically deleted, in adult BM, the transcription factor recombination signal-binding protein J κ (Rbpj), through which canonical signaling from all Notch receptors converges. Notably, detailed progenitor staging established that canonical Notch signaling is fully dispensable for all investigated stages of megakaryocyte, erythroid, and myeloid progenitors in steady state unperturbed hematopoiesis, after competitive BM transplantation, and in stress-induced erythropoiesis. Moreover, expression of key regulators of these hematopoietic lineages and Notch target genes were unaffected by Rbpj deficiency in BM progenitor cells.


Assuntos
Medula Óssea/metabolismo , Eritropoese , Mielopoese , Receptores Notch/metabolismo , Transdução de Sinais , Estresse Fisiológico , Animais , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Camundongos , Camundongos Transgênicos , Receptores Notch/genética
5.
Nature ; 554(7690): 106-111, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298288

RESUMO

Rare multipotent haematopoietic stem cells (HSCs) in adult bone marrow with extensive self-renewal potential can efficiently replenish all myeloid and lymphoid blood cells, securing long-term multilineage reconstitution after physiological and clinical challenges such as chemotherapy and haematopoietic transplantations. HSC transplantation remains the only curative treatment for many haematological malignancies, but inefficient blood-lineage replenishment remains a major cause of morbidity and mortality. Single-cell transplantation has uncovered considerable heterogeneity among reconstituting HSCs, a finding that is supported by studies of unperturbed haematopoiesis and may reflect different propensities for lineage-fate decisions by distinct myeloid-, lymphoid- and platelet-biased HSCs. Other studies suggested that such lineage bias might reflect generation of unipotent or oligopotent self-renewing progenitors within the phenotypic HSC compartment, and implicated uncoupling of the defining HSC properties of self-renewal and multipotency. Here we use highly sensitive tracking of progenitors and mature cells of the megakaryocyte/platelet, erythroid, myeloid and B and T cell lineages, produced from singly transplanted HSCs, to reveal a highly organized, predictable and stable framework for lineage-restricted fates of long-term self-renewing HSCs. Most notably, a distinct class of HSCs adopts a fate towards effective and stable replenishment of a megakaryocyte/platelet-lineage tree but not of other blood cell lineages, despite sustained multipotency. No HSCs contribute exclusively to any other single blood-cell lineage. Single multipotent HSCs can also fully restrict towards simultaneous replenishment of megakaryocyte, erythroid and myeloid lineages without executing their sustained lymphoid lineage potential. Genetic lineage-tracing analysis also provides evidence for an important role of platelet-biased HSCs in unperturbed adult haematopoiesis. These findings uncover a limited repertoire of distinct HSC subsets, defined by a predictable and hierarchical propensity to adopt a fate towards replenishment of a restricted set of blood lineages, before loss of self-renewal and multipotency.


Assuntos
Linhagem da Célula , Hematopoese , Células-Tronco Hematopoéticas/citologia , Células-Tronco Multipotentes/citologia , Animais , Antígenos CD34 , Linfócitos B/citologia , Plaquetas/citologia , Antígeno CD48/deficiência , Autorrenovação Celular , Células Eritroides/citologia , Feminino , Células-Tronco Hematopoéticas/metabolismo , Masculino , Megacariócitos/citologia , Camundongos , Células-Tronco Multipotentes/metabolismo , Células Mieloides/citologia , Membro 1 da Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Linfócitos T/citologia
6.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27695000

RESUMO

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Células Progenitoras Linfoides/fisiologia , Células Progenitoras Mieloides/fisiologia , Receptores Notch/metabolismo , Linfócitos T/fisiologia , Timo/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Células Cultivadas , Feto , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
7.
Circ Res ; 118(10): 1498-511, 2016 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-27009605

RESUMO

RATIONALE: It is now recognized that macrophages residing within developing and adult tissues are derived from diverse progenitors including those of embryonic origin. Although the functions of macrophages in adult organisms are well studied, the functions of macrophages during organ development remain largely undefined. Moreover, it is unclear whether distinct macrophage lineages have differing functions. OBJECTIVE: To address these issues, we investigated the functions of macrophage subsets resident within the developing heart, an organ replete with embryonic-derived macrophages. METHODS AND RESULTS: Using a combination of flow cytometry, immunostaining, and genetic lineage tracing, we demonstrate that the developing heart contains a complex array of embryonic macrophage subsets that can be divided into chemokine (C-C motif) receptor 2(-) and chemokine (C-C motif) receptor 2(+) macrophages derived from primitive yolk sac, recombination activating gene 1(+) lymphomyeloid, and Fms-like tyrosine kinase 3(+) fetal monocyte lineages. Functionally, yolk sac-derived chemokine (C-C motif) receptor 2(-) macrophages are instrumental in coronary development where they are required for remodeling of the primitive coronary plexus. Mechanistically, chemokine (C-C motif) receptor 2(-) macrophages are recruited to coronary blood vessels at the onset of coronary perfusion where they mediate coronary plexus remodeling through selective expansion of perfused vasculature. We further demonstrate that insulin like growth factor signaling may mediate the proangiogenic properties of embryonic-derived macrophages. CONCLUSIONS: Together, these findings demonstrate that the embryonic heart contains distinct lineages of embryonic macrophages with unique functions and reveal a novel mechanism that governs coronary development.


Assuntos
Coração/embriologia , Macrófagos/citologia , Miocárdio/citologia , Animais , Receptor 1 de Quimiocina CX3C , Linhagem da Célula , Células Cultivadas , Macrófagos/metabolismo , Camundongos , Miocárdio/metabolismo , Receptores de Quimiocinas/genética , Receptores de Quimiocinas/metabolismo , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Saco Vitelino/citologia , Saco Vitelino/metabolismo , Tirosina Quinase 3 Semelhante a fms/genética , Tirosina Quinase 3 Semelhante a fms/metabolismo
8.
Nature ; 502(7470): 232-6, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-23934107

RESUMO

The blood system is maintained by a small pool of haematopoietic stem cells (HSCs), which are required and sufficient for replenishing all human blood cell lineages at millions of cells per second throughout life. Megakaryocytes in the bone marrow are responsible for the continuous production of platelets in the blood, crucial for preventing bleeding--a common and life-threatening side effect of many cancer therapies--and major efforts are focused at identifying the most suitable cellular and molecular targets to enhance platelet production after bone marrow transplantation or chemotherapy. Although it has become clear that distinct HSC subsets exist that are stably biased towards the generation of lymphoid or myeloid blood cells, we are yet to learn whether other types of lineage-biased HSC exist or understand their inter-relationships and how differently lineage-biased HSCs are generated and maintained. The functional relevance of notable phenotypic and molecular similarities between megakaryocytes and bone marrow cells with an HSC cell-surface phenotype remains unclear. Here we identify and prospectively isolate a molecularly and functionally distinct mouse HSC subset primed for platelet-specific gene expression, with enhanced propensity for short- and long-term reconstitution of platelets. Maintenance of platelet-biased HSCs crucially depends on thrombopoietin, the primary extrinsic regulator of platelet development. Platelet-primed HSCs also frequently have a long-term myeloid lineage bias, can self-renew and give rise to lymphoid-biased HSCs. These findings show that HSC subtypes can be organized into a cellular hierarchy, with platelet-primed HSCs at the apex. They also demonstrate that molecular and functional priming for platelet development initiates already in a distinct HSC population. The identification of a platelet-primed HSC population should enable the rational design of therapies enhancing platelet output.


Assuntos
Plaquetas/citologia , Diferenciação Celular , Células-Tronco Hematopoéticas/citologia , Animais , Linhagem da Célula/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/metabolismo , Linfócitos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
9.
Immunity ; 38(5): 930-42, 2013 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-23684985

RESUMO

The mechanisms underlying the silencing of alternative fate potentials in very early B cell precursors remain unclear. Using gain- and loss-of-function approaches together with a synthetic Zinc-finger polypeptide (6ZFP) engineered to prevent transcription factor binding to a defined cis element, we show that the transcription factor EBF1 promotes B cell lineage commitment by directly repressing expression of the T-cell-lineage-requisite Gata3 gene. Ebf1-deficient lymphoid progenitors exhibited increased T cell lineage potential and elevated Gata3 transcript expression, whereas enforced EBF1 expression inhibited T cell differentiation and caused rapid loss of Gata3 mRNA. Notably, 6ZFP-mediated perturbation of EBF1 binding to a Gata3 regulatory region restored Gata3 expression, abrogated EBF1-driven suppression of T cell differentiation, and prevented B cell differentiation via a GATA3-dependent mechanism. Furthermore, EBF1 binding to Gata3 regulatory sites induced repressive histone modifications across this region. These data identify a transcriptional circuit critical for B cell lineage commitment.


Assuntos
Linfócitos B/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Linfócitos T/metabolismo , Transativadores/metabolismo , Animais , Linfócitos B/citologia , Linfócitos B/imunologia , Diferenciação Celular/imunologia , Linhagem da Célula/genética , Células Cultivadas , Feminino , Expressão Gênica , Regulação da Expressão Gênica , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Histonas/metabolismo , Células Progenitoras Linfoides/metabolismo , Linfopoese/genética , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/biossíntese , Receptor Notch1/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia , Transativadores/deficiência , Transativadores/genética , Transcrição Gênica , Dedos de Zinco/genética
10.
Nat Immunol ; 13(4): 412-9, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22344248

RESUMO

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.


Assuntos
Linfócitos B/citologia , Linhagem da Célula/imunologia , Células Progenitoras Linfoides/citologia , Células Mieloides/citologia , Células Precursoras de Linfócitos B/citologia , Linfócitos T/citologia , Animais , Separação Celular , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células Progenitoras Linfoides/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Timo/citologia
11.
Genes Dev ; 23(10): 1195-206, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19451220

RESUMO

Ectopic repression of retinoic acid (RA) receptor target genes by PML/RARA and PLZF/RARA fusion proteins through aberrant recruitment of nuclear corepressor complexes drives cellular transformation and acute promyelocytic leukemia (APL) development. In the case of PML/RARA, this repression can be reversed through treatment with all-trans RA (ATRA), leading to leukemic remission. However, PLZF/RARA ectopic repression is insensitive to ATRA, resulting in persistence of the leukemic diseased state after treatment, a phenomenon that is still poorly understood. Here we show that, like PML/RARA, PLZF/RARA expression leads to recruitment of the Polycomb-repressive complex 2 (PRC2) Polycomb group (PcG) complex to RA response elements. However, unlike PML/RARA, PLZF/RARA directly interacts with the PcG protein Bmi-1 and forms a stable component of the PRC1 PcG complex, resulting in PLZF/RARA-dependent ectopic recruitment of PRC1 to RA response elements. Upon treatment with ATRA, ectopic recruitment of PRC2 by either PML/RARA or PLZF/RARA is lost, whereas PRC1 recruited by PLZF/RARA remains, resulting in persistent RA-insensitive gene repression. We further show that Bmi-1 is essential for the PLZF/RARA cellular transformation property and implicates a central role for PRC1 in PLZF/RARA-mediated myeloid leukemic development.


Assuntos
Transformação Celular Neoplásica , Leucemia/fisiopatologia , Proteínas de Fusão Oncogênica/metabolismo , Proteínas Repressoras/metabolismo , Antineoplásicos/farmacologia , Cromatina/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Complexo Repressor Polycomb 1 , Proteínas do Grupo Polycomb , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas/metabolismo , Tretinoína/farmacologia , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...