Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 10: 1112980, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36873402

RESUMO

Introduction: Patients with ventricular tachyarrhythmias (VT) are at high risk of sudden cardiac death. When appropriate, catheter ablation is modestly effective, with relatively high VT recurrence and complication rates. Personalized models that incorporate imaging and computational approaches have advanced VT management. However, 3D patient-specific functional electrical information is typically not considered. We hypothesize that incorporating non-invasive 3D electrical and structural characterization in a patient-specific model improves VT-substrate recognition and ablation targeting. Materials and methods: In a 53-year-old male with ischemic cardiomyopathy and recurrent monomorphic VT, we built a structural-functional model based on high-resolution 3D late-gadolinium enhancement (LGE) cardiac magnetic resonance imaging (3D-LGE CMR), multi-detector computed tomography (CT), and electrocardiographic imaging (ECGI). Invasive data from high-density contact and pace mapping obtained during endocardial VT-substrate modification were also incorporated. The integrated 3D electro-anatomic model was analyzed off-line. Results: Merging the invasive voltage maps and 3D-LGE CMR endocardial geometry led to a mean Euclidean node-to-node distance of 5 ± 2 mm. Inferolateral and apical areas of low bipolar voltage (<1.5 mV) were associated with high 3D-LGE CMR signal intensity (>0.4) and with higher transmurality of fibrosis. Areas of functional conduction delay or block (evoked delayed potentials, EDPs) were in close proximity to 3D-LGE CMR-derived heterogeneous tissue corridors. ECGI pinpointed the epicardial VT exit at ∼10 mm from the endocardial site of origin, both juxtaposed to the distal ends of two heterogeneous tissue corridors in the inferobasal left ventricle. Radiofrequency ablation at the entrances of these corridors, eliminating all EDPs, and at the VT site of origin rendered the patient non-inducible and arrhythmia-free until the present day (20 months follow-up). Off-line analysis in our model uncovered dynamic electrical instability of the LV inferolateral heterogeneous scar region which set the stage for an evolving VT circuit. Discussion and conclusion: We developed a personalized 3D model that integrates high-resolution structural and electrical information and allows the investigation of their dynamic interaction during arrhythmia formation. This model enhances our mechanistic understanding of scar-related VT and provides an advanced, non-invasive roadmap for catheter ablation.

2.
Proc Natl Acad Sci U S A ; 117(31): 18617-18626, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32675240

RESUMO

Genome-wide association studies have identified noncoding variants near TBX3 that are associated with PR interval and QRS duration, suggesting that subtle changes in TBX3 expression affect atrioventricular conduction system function. To explore whether and to what extent the atrioventricular conduction system is affected by Tbx3 dose reduction, we first characterized electrophysiological properties and morphology of heterozygous Tbx3 mutant (Tbx3+/-) mouse hearts. We found PR interval shortening and prolonged QRS duration, as well as atrioventricular bundle hypoplasia after birth in heterozygous mice. The atrioventricular node size was unaffected. Transcriptomic analysis of atrioventricular nodes isolated by laser capture microdissection revealed hundreds of deregulated genes in Tbx3+/- mutants. Notably, Tbx3+/- atrioventricular nodes showed increased expression of working myocardial gene programs (mitochondrial and metabolic processes, muscle contractility) and reduced expression of pacemaker gene programs (neuronal, Wnt signaling, calcium/ion channel activity). By integrating chromatin accessibility profiles (ATAC sequencing) of atrioventricular tissue and other epigenetic data, we identified Tbx3-dependent atrioventricular regulatory DNA elements (REs) on a genome-wide scale. We used transgenic reporter assays to determine the functionality of candidate REs near Ryr2, an up-regulated chamber-enriched gene, and in Cacna1g, a down-regulated conduction system-specific gene. Using genome editing to delete candidate REs, we showed that a strong intronic bipartite RE selectively governs Cacna1g expression in the conduction system in vivo. Our data provide insights into the multifactorial Tbx3-dependent transcriptional network that regulates the structure and function of the cardiac conduction system, which may underlie the differences in PR duration and QRS interval between individuals carrying variants in the TBX3 locus.


Assuntos
Nó Atrioventricular , Proteínas com Domínio T , Transcriptoma/genética , Animais , Arritmias Cardíacas , Nó Atrioventricular/metabolismo , Nó Atrioventricular/fisiologia , Canais de Cálcio Tipo T/genética , Canais de Cálcio Tipo T/metabolismo , Camundongos , Camundongos Transgênicos , Mutação/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo
3.
Development ; 146(8)2019 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-30936179

RESUMO

The rate of contraction of the heart relies on proper development and function of the sinoatrial node, which consists of a small heterogeneous cell population, including Tbx3+ pacemaker cells. Here, we have isolated and characterized the Tbx3+ cells from Tbx3+/Venus knock-in mice. We studied electrophysiological parameters during development and found that Venus-labeled cells are genuine Tbx3+ pacemaker cells. We analyzed the transcriptomes of late fetal FACS-purified Tbx3+ sinoatrial nodal cells and Nppb-Katushka+ atrial and ventricular chamber cardiomyocytes, and identified a sinoatrial node-enriched gene program, including key nodal transcription factors, BMP signaling and Smoc2, the disruption of which in mice did not affect heart rhythm. We also obtained the transcriptomes of the sinoatrial node region, including pacemaker and other cell types, and right atrium of human fetuses, and found a gene program including TBX3, SHOX2, ISL1 and HOX family members, and BMP and NOTCH signaling components conserved between human and mouse. We conclude that a conserved gene program characterizes the sinoatrial node region and that the Tbx3+/Venus allele provides a reliable tool for visualizing the sinoatrial node, and studying its development and function.


Assuntos
Nó Sinoatrial/metabolismo , Transcriptoma/genética , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Eletrocardiografia , Feminino , Citometria de Fluxo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Imuno-Histoquímica , Proteínas com Homeodomínio LIM/genética , Proteínas com Homeodomínio LIM/metabolismo , Camundongos , Camundongos Mutantes , Microscopia de Fluorescência , Proteínas com Domínio T/genética , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Circ Genom Precis Med ; 12(2): e002328, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30681347

RESUMO

BACKGROUND: Regulatory elements may be involved in the mechanisms by which 52 loci influence myocardial mass, reflected by abnormal amplitude and duration of the QRS complex on the ECG. Functional annotation thus far did not take into account how these elements are affected in disease context. METHODS: We generated maps of regulatory elements on hypertrophic cardiomyopathy patients (ChIP-seq N=14 and RNA-seq N=11) and nondiseased hearts (ChIP-seq N=4 and RNA-seq N=11). We tested enrichment of QRS-associated loci on elements differentially acetylated and directly regulating differentially expressed genes between hypertrophic cardiomyopathy patients and controls. We further performed functional annotation on QRS-associated loci using these maps of differentially active regulatory elements. RESULTS: Regions differentially affected in disease showed a stronger enrichment ( P=8.6×10-5) for QRS-associated variants than those not showing differential activity ( P=0.01). Promoters of genes differentially regulated between hypertrophic cardiomyopathy patients and controls showed more enrichment ( P=0.001) than differentially acetylated enhancers ( P=0.8) and super-enhancers ( P=0.025). We also identified 74 potential causal variants overlapping these differential regulatory elements. Eighteen of the genes mapped confirmed previous findings, now also pinpointing the potentially affected regulatory elements and candidate causal variants. Fourteen new genes were also mapped. CONCLUSIONS: Our results suggest differentially active regulatory elements between hypertrophic cardiomyopathy patients and controls can offer more insights into the mechanisms of QRS-associated loci than elements not affected by disease.


Assuntos
Cardiomiopatia Hipertrófica/genética , Miocárdio/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Acetilação , Adolescente , Adulto , Cardiomiopatia Hipertrófica/patologia , Proteínas de Transporte/genética , Estudos de Casos e Controles , Eletrocardiografia , Feminino , Loci Gênicos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Adulto Jovem
5.
Nat Commun ; 9(1): 4357, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30341287

RESUMO

The cardiac autonomic nervous system (ANS) controls normal atrial electrical function. The cardiac ANS produces various neuropeptides, among which the neurokinins, whose actions on atrial electrophysiology are largely unknown. We here demonstrate that the neurokinin substance-P (Sub-P) activates a neurokinin-3 receptor (NK-3R) in rabbit, prolonging action potential (AP) duration through inhibition of a background potassium current. In contrast, ventricular AP duration was unaffected by NK-3R activation. NK-3R stimulation lengthened atrial repolarization in intact rabbit hearts and consequently suppressed arrhythmia duration and occurrence in a rabbit isolated heart model of atrial fibrillation (AF). In human atrial appendages, the phenomenon of NK-3R mediated lengthening of atrial repolarization was also observed. Our findings thus uncover a pathway to selectively modulate atrial AP duration by activation of a hitherto unidentified neurokinin-3 receptor in the membrane of atrial myocytes. NK-3R stimulation may therefore represent an anti-arrhythmic concept to suppress re-entry-based atrial tachyarrhythmias, including AF.


Assuntos
Átrios do Coração/metabolismo , Canais de Potássio/metabolismo , Receptores da Neurocinina-3/fisiologia , Potenciais de Ação , Animais , Arritmias Cardíacas , Fibrilação Atrial , Função Atrial , Humanos , Bloqueadores dos Canais de Potássio , Coelhos , Receptores da Neurocinina-3/metabolismo
7.
J Cardiovasc Dev Dis ; 4(2)2017 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-29367537

RESUMO

The cardiac conduction system (CCS) initiates and coordinately propagates the electrical impulse to orchestrate the heartbeat. It consists of a set of interconnected components with shared properties. A better understanding of the origin and specification of CCS lineages has allowed us to better comprehend the etiology of CCS disease and has provided leads for development of therapies. A variety of technologies and approaches have been used to investigate CCS lineages, which will be summarized in this review. The findings imply that there is not a single CCS lineage. In contrast, early cell fate decisions segregate the lineages of the CCS components while they remain connected to each other.

8.
Prog Biophys Mol Biol ; 122(3): 202-214, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27221779

RESUMO

Heterogeneous distribution of electrophysiological behavior across the heart is essential for normal cardiac function. If this heterogeneity becomes excessive it may contribute to arrhythmogenesis and sudden cardiac death. Controversy exists regarding the localization of activation and repolarization gradients in the diseased heart and how these heterogeneities contribute to arrhythmogenesis. In this review we focus on the genesis and existence of transmural heterogeneity in activation and repolarization. We will describe a possible embryonic origin of these heterogeneities and address the question how heterogeneities contribute to the genesis of the electrocardiogram and how they may cause reentrant arrhythmias. This review subsequently concentrates on several pathologies in which transmural heterogeneities are thought to play a role.


Assuntos
Arritmias Cardíacas/fisiopatologia , Eletrocardiografia , Fenômenos Eletrofisiológicos , Ventrículos do Coração/fisiopatologia , Animais , Humanos
10.
Am J Physiol Heart Circ Physiol ; 307(8): H1178-86, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25128175

RESUMO

Instability of the inner mitochondrial membrane potential (ΔΨm) has been implicated in electrical dysfunction, including arrhythmogenesis during ischemia-reperfusion. Monitoring ΔΨm has led to conflicting results, where depolarization has been reported as sporadic and as a propagating wave. The present study was designed to resolve the aforementioned difference and determine the unknown relationship between ΔΨm and electrophysiology. We developed a novel imaging modality for simultaneous optical mapping of ΔΨm and transmembrane potential (Vm). Optical mapping was performed using potentiometric dyes on preparations from 4 mouse hearts, 14 rabbit hearts, and 7 human hearts. Our data showed that during ischemia, ΔΨm depolarization is sporadic and changes asynchronously with electrophysiological changes. Spatially, ΔΨm depolarization was associated with action potential duration shortening but not conduction slowing. Analysis of focal activity indicated that ΔΨm is not different within the myocardium where the focus originates compared with normal ventricular tissue. Overall, our data suggest that during ischemia, mitochondria maintain their function at the expense of sarcolemmal electrophysiology, but ΔΨm depolarization does not have a direct association to ischemia-induced arrhythmias.


Assuntos
Potenciais de Ação , Potencial da Membrana Mitocondrial , Isquemia Miocárdica/metabolismo , Animais , Humanos , Camundongos , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Isquemia Miocárdica/fisiopatologia , Imagem Óptica/métodos , Coelhos
11.
IEEE Rev Biomed Eng ; 7: 115-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24158521

RESUMO

In the past decade, optical mapping provided crucial mechanistic insight into electromechanical function and the mechanism of ventricular fibrillation. Therefore, to date, optical mapping dominates experimental cardiac electrophysiology. The first cardiac measurements involving optics were done in the early 1900s using the fast cinematograph that later evolved into methods for high-resolution activation and repolarization mapping and stimulation of specific cardiac cell types. The field of "optocardiography," therefore, emerged as the use of light for recording or interfering with cardiac physiology. In this review, we discuss how optocardiography developed into the dominant research technique in experimental cardiology. Furthermore, we envision how optocardiographic methods can be used in clinical cardiology.


Assuntos
Eletrocardiografia , Coração , Imagem Óptica , Optogenética , Imagens com Corantes Sensíveis à Voltagem , Animais , Anuros , Coração/anatomia & histologia , Coração/fisiologia , Humanos , Camundongos
12.
Nat Genet ; 45(9): 1044-9, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23872634

RESUMO

Brugada syndrome is a rare cardiac arrhythmia disorder, causally related to SCN5A mutations in around 20% of cases. Through a genome-wide association study of 312 individuals with Brugada syndrome and 1,115 controls, we detected 2 significant association signals at the SCN10A locus (rs10428132) and near the HEY2 gene (rs9388451). Independent replication confirmed both signals (meta-analyses: rs10428132, P = 1.0 × 10(-68); rs9388451, P = 5.1 × 10(-17)) and identified one additional signal in SCN5A (at 3p21; rs11708996, P = 1.0 × 10(-14)). The cumulative effect of the three loci on disease susceptibility was unexpectedly large (Ptrend = 6.1 × 10(-81)). The association signals at SCN5A-SCN10A demonstrate that genetic polymorphisms modulating cardiac conduction can also influence susceptibility to cardiac arrhythmia. The implication of association with HEY2, supported by new evidence that Hey2 regulates cardiac electrical activity, shows that Brugada syndrome may originate from altered transcriptional programming during cardiac development. Altogether, our findings indicate that common genetic variation can have a strong impact on the predisposition to rare diseases.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Síndrome de Brugada/complicações , Síndrome de Brugada/genética , Morte Súbita Cardíaca/etiologia , Variação Genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Canal de Sódio Disparado por Voltagem NAV1.8/genética , Proteínas Repressoras/genética , Alelos , Animais , Estudos de Casos e Controles , Cromossomos Humanos Par 3 , Cromossomos Humanos Par 6 , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos , Camundongos Knockout , Razão de Chances , Polimorfismo de Nucleotídeo Único , Canais de Sódio/genética , Canais de Sódio/metabolismo
13.
J Physiol ; 591(17): 4067-71, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23858007

RESUMO

George Ralph Mines studied the basic principles of reentry and published his data in The Journal of Physiology in 1913. Exactly 100 years later we discuss his first electrophysiological experiments and how his results lead to the insight that was the basis for the treatment of the clinical arrhythmias seen in Wolff-Parkinson-White syndrome.


Assuntos
Arritmias Cardíacas/fisiopatologia , Cardiologia/história , Síndrome de Wolff-Parkinson-White/fisiopatologia , Animais , Inglaterra , História do Século XX , Humanos
14.
Circ Res ; 113(2): 137-41, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23661717

RESUMO

RATIONALE: In patients with Brugada syndrome, arrhythmias typically originate in the right ventricular outflow tract (RVOT). The RVOT develops from the slowly conducting embryonic outflow tract. OBJECTIVE: We hypothesize that this embryonic phenotype is maintained in the fetal and adult RVOT and leads to conduction slowing, especially after sodium current reduction. METHODS AND RESULTS: We determined expression patterns in the embryonic myocardium and performed activation mapping in fetal and adult hearts, including hearts from adult mice heterozygous for a mutation associated with Brugada syndrome (Scn5a1798insD/+). The embryonic RVOT was characterized by expression of Tbx2, a repressor of differentiation, and absence of expression of both Hey2, a ventricular transcription factor, and Gja1, encoding the principal gap-junction subunit for ventricular fast conduction. Also, conduction velocity was lower in the RVOT than in the right ventricular free wall. Later in the development, Gja1 and Scn5a expression remained lower in the subepicardial myocardium of the RVOT than in RV myocardium. Nevertheless, conduction velocity in the adult RVOT was similar to that of the right ventricular free wall. However, in hearts of Scn5a1798insD/+ mice and in normal hearts treated with ajmaline, conduction was slower in the RVOT than in the right ventricular wall. CONCLUSIONS: The slowly conducting embryonic phenotype is maintained in the fetal and adult RVOT and is unmasked when cardiac sodium channel function is reduced.


Assuntos
Regulação para Baixo/fisiologia , Sistema de Condução Cardíaco/embriologia , Sistema de Condução Cardíaco/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Função Ventricular Direita/fisiologia , Fatores Etários , Animais , Síndrome de Brugada/fisiopatologia , Camundongos , Camundongos da Linhagem 129 , Camundongos Transgênicos , Canal de Sódio Disparado por Voltagem NAV1.5/fisiologia , Técnicas de Cultura de Órgãos
15.
Cardiovasc Res ; 97(1): 182-91, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22997159

RESUMO

AIMS: Transgenic mice are frequently used to investigate the role of genes involved in cardiac conduction. The QRS duration calculated from the electrocardiogram (ECG) is a commonly used measure for ventricular conduction time. However, the relation between ventricular activation and QRS duration calculated from a mouse surface ECG is not well understood. We aim to relate ventricular activation and repolarization patterns with the mouse ECG. METHODS AND RESULTS: Ventricular activation and repolarization patterns generated by high-density optical mapping and a six-lead pseudo-ECG were compared in isolated mouse hearts. In addition, mouse ECGs were simulated in silico. Right-ventricular activation ends later than left-ventricular activation. Final activation coincided with the end of the QRS complex in leads III and aVF, but not in leads I, II, aVR, and aVL. The pattern of early repolarization (at 20% of repolarization, RT20) but not of RT50 or RT80 followed the activation pattern. After sodium channel blockade by ajmaline, total ventricular activation time increased by 10.0 ms, whereas QRS duration increased by only 2.1 ms. In mice carrying a mutation in Scn5a (1798insD), ventricular activation ended after the end of the QRS complex (12.9 ± 0.1 vs. 10.8 ± 0.3). CONCLUSION: In the mouse, ventricular myocardium activation and early repolarization waves are simultaneously present. This hampers unequivocal interpretation of the duration of the QRS complex as a measure of ventricular activation duration, especially when conduction is slowed. Under these conditions mapping of local activation and repolarization patterns is required for correct interpretation of the ECG.


Assuntos
Potenciais de Ação , Eletrocardiografia , Função Ventricular Esquerda , Função Ventricular Direita , Animais , Simulação por Computador , Cinética , Camundongos , Camundongos Transgênicos , Modelos Cardiovasculares , Mutação , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Bloqueadores dos Canais de Sódio/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Função Ventricular Direita/efeitos dos fármacos , Imagens com Corantes Sensíveis à Voltagem
16.
Europace ; 14(10): 1518-23, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22490373

RESUMO

AIMS: Recurrences of ventricular fibrillation (VF) during cardiopulmonary resuscitation (CPR) are associated with a reduced chance of survival. The effect of VF during CPR on the myocardium is unknown. We tested the hypothesis that VF during simulated CPR reduces the restoration of the myocardial energy state and contractile function. METHODS AND RESULTS: Twelve porcine hearts were isolated and perfused with the pig's own blood. First, cardiac oxygen consumption was measured by blood gas analysis. Secondly, we simulated sudden cardiac arrest by VF (7 min VF, zero flow) followed by simulated CPR (7 min, 0.3 mL/g/min perfusion rate) in the absence and presence of VF [six hearts were maintained in VF (VF-group), six were defibrillated (defib-group)]. The VF increased the cardiac oxygen consumption by 71% (0.87 ± 0.12 vs. 1.49 ± 0.14 µmol O2/g/min; mean ± SEM, P< 0.001) compared with a ventricular rhythm of 62 beats/min. The presence of VF during simulated CPR after 7 min of cardiac arrest hampered restoration of myocardial creatine-phosphate levels compared with defibrillated hearts (61 ± 9 vs. 87 ± 7% of baseline values, respectively; P< 0.05). The cardiac contractile function was significantly higher in the defib- than in the VF-group (area under the pressure curve 2.29 ± 0.22 vs. 1.72 ± 0.14 s×mm Hg respectively; P< 0.05). CONCLUSIONS: These data demonstrate that the cardiac oxygen consumption is increased by VF and that the presence of VF during CPR hampers the restoration of the myocardial energy state and contractility. Strategies that reduce VF duration without disrupting chest compressions will benefit the restoration of the cardiac energy state during resuscitations.


Assuntos
Reanimação Cardiopulmonar , Fosfocreatina/metabolismo , Fibrilação Ventricular/fisiopatologia , Animais , Gasometria , Morte Súbita Cardíaca/etiologia , Cardioversão Elétrica , Frequência Cardíaca/fisiologia , Técnicas In Vitro , Masculino , Contração Miocárdica/fisiologia , Consumo de Oxigênio/fisiologia , Fosfocreatina/análise , Suínos , Fibrilação Ventricular/complicações
17.
Cardiovasc Res ; 94(3): 439-49, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22419669

RESUMO

AIM: Treatment of disorders of the sinus node or the atrioventricular node requires insights into the molecular mechanisms of development and homoeostasis of these pacemaker tissues. In the developing heart, transcription factor TBX3 is required for pacemaker and conduction system development. Here, we explore the role of TBX3 in the adult heart and investigate whether TBX3 is able to reprogramme terminally differentiated working cardiomyocytes into pacemaker cells. METHODS AND RESULTS: TBX3 expression was ectopically induced in cardiomyocytes of adult transgenic mice using tamoxifen. Expression analysis revealed an efficient switch from the working myocardial expression profile to that of the pacemaker myocardium. This included suppression of genes encoding gap junction subunits (Cx40, Cx43), the cardiac Na(+) channel (Na(V)1.5; I(Na)), and inwardly rectifying K(+) ion channels (K(ir) genes; I(K1)). Concordantly, we observed conduction slowing in these hearts and reductions in I(Na) and I(K1) in cardiomyocytes isolated from these hearts. The reduction in I(K1) resulted in a more depolarized maximum diastolic potential, thus enabling spontaneous diastolic depolarization. Neither ectopic pacemaker activity nor pacemaker current I(f) was observed. Lentiviral expression of TBX3 in ventricular cardiomyocytes resulted in conduction slowing and development of heterogeneous phenotypes, including depolarized and spontaneously active cardiomyocytes. CONCLUSIONS: TBX3 reprogrammes terminally differentiated working cardiomyocytes and induces important pacemaker properties. The ability of TBX3 to reduce intercellular coupling to overcome current-to-load mismatch and the ability to reduce I(K1) density to enable diastolic depolarization are promising TBX3 characteristics that may facilitate biological pacemaker formation strategies.


Assuntos
Relógios Biológicos/genética , Diferenciação Celular , Regulação da Expressão Gênica no Desenvolvimento , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/metabolismo , Animais , Canais Iônicos/genética , Canais Iônicos/metabolismo , Camundongos , Camundongos Transgênicos , Miócitos Cardíacos/citologia , Nó Sinoatrial/metabolismo , Proteínas com Domínio T/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...