Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
One Health ; 18: 100747, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38746540

RESUMO

Tick-borne flaviviruses and Borrelia spp. are globally spread pathogens of zoonotic potential that are maintained by a transmission cycle at the interface between ticks and vertebrate hosts, mainly wild animals. Aside data on pathogen burden in ticks, information on the status of various hosts relative to infection is important to acquire. We reviewed how those infections have been studied in wildlife host species in the field to discuss how collected data provided relevant epidemiological information and to identify needs for further studies. The literature was screened for observational studies on pathogen or antibody detection for tick-borne Borrelia spp. and flaviviruses in wildlife host animals. Overall, Borrelia spp. were more studied (73% of case studies, representing 297 host species) than flaviviruses (27% of case studies, representing 114 host species). Studies on both Borrelia spp. and flaviviruses focused mainly on the same species, namely bank vole and yellow-necked mouse. Most studies were order-specific and cross-sectional, reporting prevalence at various locations, but with little insight into the underlying epidemiological dynamics. Host species with potential to act as reservoir hosts of these pathogens were neglected, notably birds. We highlight the necessity of collecting both demographics and infection data in wildlife studies, and to consider communities of species, to better estimate zoonotic risk potential in the One Health context.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38359084

RESUMO

Infectious diseases threaten endangered species, particularly in small isolated populations. Seabird populations on the remote Amsterdam Island in the Indian Ocean have been in decline for the past three decades, with avian cholera caused by Pasteurella multocida proposed as the primary driver. However, Erysipelothrix species have also been sporadically detected from albatrosses on Amsterdam Island and may be contributing to some of the observed mortality. In this study, we genomically characterized 16 Erysipelothrix species isolates obtained from three Indian yellow-nosed albatross (Thalassarche carteri) chick carcasses in 2019. Histological analyses suggest that they died of bacterial septicaemia. Two isolates were sequenced using both Illumina short-read and MinION long-read approaches, which - following hybrid assembly - resulted in closed circular genomes. Mapping of Illumina reads from the remaining isolates to one of these new reference genomes revealed that all 16 isolates were closely related, with a maximum of 13 nucleotide differences distinguishing any pair of isolates. The nucleotide diversity of isolates obtained from the same or different carcasses was similar, suggesting all three chicks were likely infected from a common source. These genomes were compared with a global collection of genomes from Erysipelothrix rhusiopathiae and other species from the same genus. The isolates from albatrosses were phylogenetically distinct, sharing a most recent common ancestor with E. rhusiopathiae. Based on phylogenomic analysis and standard thresholds for average nucleotide identity and digital DNA-DNA hybridization, these isolates represent a novel Erysipelothrix species, for which we propose the name Erysipelothrix amsterdamensis sp. nov. The type strain is A18Y020dT (=CIP 112216T=DSM 115297T). The implications of this bacterium for albatross conservation will require further study.


Assuntos
Erysipelothrix , Animais , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Galinhas , Nucleotídeos
3.
Sci Rep ; 14(1): 4357, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388645

RESUMO

Monitoring pathogen circulation in wildlife sentinel populations can help to understand and predict the spread of disease at the wildlife-livestock-human interface. Immobile young provide a useful target population for disease surveillance, since they can be easily captured for sampling and their levels of antibodies against infectious agents can provide an index of localized circulation. However, early-life immune responses include both maternally-derived antibodies and antibodies resulting from exposure to pathogens, and disentangling these two processes requires understanding their individual dynamics. We conducted an egg-swapping experiment in an urban-nesting sentinel seabird, the yellow-legged gull, and measured antibody levels against three pathogens of interest (avian influenza virus AIV, Toxoplasma gondii TOX, and infectious bronchitis virus IBV) across various life stages, throughout chick growth, and between nestlings raised by biological or non-biological parents. We found that levels of background circulation differed among pathogens, with AIV antibodies widely present across all life stages, TOX antibodies rarer, and IBV antibodies absent. Antibody titers declined steadily from adult through egg, nestling, and chick stages. For the two circulating pathogens, maternal antibodies declined exponentially after hatching at similar rates, but the rate of linear increase due to environmental exposure was significantly higher in the more prevalent pathogen (AIV). Differences in nestling antibody levels due to parental effects also persisted longer for AIV (25 days, vs. 14 days for TOX). Our results suggest that yellow-legged gulls can be a useful sentinel population of locally transmitted infectious agents, provided that chicks are sampled at ages when environmental exposure outweighs maternal effects.


Assuntos
Charadriiformes , Vírus da Influenza A , Influenza Aviária , Animais , Humanos , Anticorpos Antivirais , Galinhas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA