Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38691291

RESUMO

Herein, we present a novel approach for the synthesis of ZnO nanoparticles (ZnO NPs) using a non-thermal plasma source generated by the gliding arc discharge-air system. The effect of discharge time on the physical and optical properties, as well as the photocatalytic performance of the as-fabricated ZnO NPs, was investigated. The characterization techniques revealed that the as-synthesized ZnO exhibit hexagonal Wurtzite structure, with a wide energy gap and peak intensities of UV-vis absorption with longer discharge times. A decrease in particle size from 29 to 25 nm was also observed with increasing discharge time, while all samples were thermally stable between 25 and 700 °C. The photocatalytic performance of the ZnO NPs was evaluated by degrading Congo Red (CR) dye with a concentration of 20 ppm under sunlight at a dose of 1 mg/mL. The as-synthesized ZnO NPs revealed exceptional photocatalytic performance by degrading ~ 97% of CR dye after irradiation for 150 min. This work presents an easy and simple method for synthesizing NPs in a short time and pave the way for other potential ideas on the application of plasma gliding arc discharge.

2.
ACS Omega ; 9(17): 19461-19480, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38708276

RESUMO

Nile blue (NB) dye is a highly toxic substance that when discharged into sewage presents a significant risk to the environment and human health. Carbon-based nanomaterials, such as graphene oxide (GO), reduced graphene oxide (rGO), and their nanocomposites, offer considerable potential for eliminating hazardous pollutants from aqueous systems. In this study, we have successfully fabricated bare GO and rGO, and then, the rGO was decorated with silver (Ag) nanoparticles to develop the Ag-rGO composite. The as-prepared materials were characterized by various techniques, such as UV-visible (UV-vis) and Fourier transform infrared (FTIR) spectroscopies, X-ray diffraction (XRD), energy-dispersive X-ray (EDX), and scanning electron microscopy (SEM) to elucidate their structure, morphology, and chemical composition. The pollutant removal performance of the as-prepared materials was evaluated through a batch approach under the effect of various experimental variables for removal of NB dye from wastewater. As obvious, the Ag-rGO composite revealed exceptional performance for NB dye removal from wastewater, with a maximum removal percentage of 94% within 60 min, which is remarkably higher than those of the rGO (i.e., 59%) and GO (i.e., 22%), under the same experimental conditions. The adsorption data was analyzed with thermodynamics, isotherms, and kinetics models to better understand the physicochemical mechanisms driving the effective removal of the NB dye. The results reveal that Ag-rGO nanocomposite exhibit excellent adsorption ability as well as favorable thermodynamic and kinetic parameters for NB dye removal. It was also found that the presence of light enhanced the adsorptive removal of NB while using Ag-rGO as an adsorbent. The present study noted significant reusability of the Ag-rGO nanocomposite, likely due to minimal Ag leaching and/or the robust stability of the Ag-rGO. It is suggested that Ag-rGO-based hybrid materials could serve as promising candidates for efficiently adsorbing and catalytically removing various toxic pollutants from wastewater.

3.
RSC Adv ; 14(20): 14438-14451, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38694548

RESUMO

Supercapacitors have substantially altered the landscape of sophisticated energy storage devices with their exceptional power density along with prolonged cyclic stability. On the contrary, their energy density remains low, requiring research to compete with conventional battery storage devices. This study addresses the disparities between energy and power densities in energy storage technologies by exploring the integration of layered double hydroxides (LDH) and highly conductive materials to develop an innovative energy storage system. Four electrodes were fabricated via a hydrothermal process using NiCoCu LDH, Ag-citrate, PANI, and f-SWCNTs. The optimal electrode demonstrated exceptional electrochemical properties; at 0.5 A g-1, it possessed specific capacitances of 807 F g-1, twice as high as those of the pure sample. The constructed asymmetric supercapacitor device attained energy densities of 62.15 W h kg-1 and 22.44 W h kg-1, corresponding to power densities of 1275 W kg-1 and 11 900 W kg-1, respectively. Furthermore, it maintained 100% cyclic stability and a coulombic efficiency of 95% for 4000 charge-discharge cycles. The concept of a supercapacitor of the hybrid grade was reinforced by power law investigations, which unveiled b-values in the interval of 0.5 to 1. This research emphasizes the considerable potential of supercapacitor-grade NiCoCu LDH/Ag-citrate-PANI-f-SWCNTs nanocomposites for superior rate performance, robust cycle stability, and enhanced energy storage capacity.

4.
Chem Asian J ; : e202400070, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581101

RESUMO

Hydrogen has been regarded as a promising alternative to traditional fossil fuels, presenting itself as a viable and environmentally friendly energy choice. The design and fabrication of highly efficient hydrogen storage materials is crucial to the wide utilization of hydrogen-based technologies. Magnesium-based nanocrystalline materials have received significant interest in the field of hydrogen storage due to their remarkable hydrogen storage capabilities and release efficiency. This review emphasizes on the most useful techniques including vapor deposition, sol-gel synthesis, electrochemical deposition, magnetron sputtering, and template-assisted approaches used for the fabrication of Magnesium-based nanocrystalline hydrogen storage materials (Mg-NHSMs), stressing their advantages, limitations, and recent advancements. These cutting-edge techniques demonstrate their significance in offering useful insights into the performance of Mg-NHSMs. Further, this review describes various applications of Mg-NHSMs. In addition, this review highlights the conclusion and future perspectives on the improvement of magnesium based nanocrystalline materials for efficient hydrogen storage.

5.
Heliyon ; 10(5): e27378, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486780

RESUMO

Modern industries rapid expansion has heightened energy needs and accelerated fossil fuel depletion, contributing to global warming. Additionally, organic pollutants present substantial risks to aquatic ecosystems due to their stability, insolubility, and non-biodegradability. Scientists are currently researching high-performance materials to address these issues. LaFeO3 nanosheets (LFO-NS) were synthesized in this study using a solvothermal method with polyvinylpyrrolidone (PVP) as a soft template. The LFO-NS demonstrate superior performance, large surface area and charge separation than that of LaFeO3 nanoparticles (LFO-NP). The LFO-NS performance is further upgraded by incorporating ZIF-67. Our results confirmed the ZIF-67/LFO-NS nanocomposite have superior performances than pure LFO-NP and ZIF-67. The integration of ZIF-67 has enhanced the charge separation and promote the surface area of LFO-NSwhich was confirmed by various characterization techniques including TEM, HRTEM, DRS, EDX, XRD, FS, XPS, FT-IR, BET, PL, and RAMAN. The 5ZIF-67/LFO-NS sample showed significant activities for CO2 conversion, malachite green degradation, and antibiotics (cefazolin, oxacillin, and vancomycin) degradation. Furthermore, stability tests have confirmed that our optimal sample very active and stable. Furthermore, based on scavenger experiments and the photocatalytic degradation pathways, it has been established that H+ and •O2- are vital in the decomposition of MG and antibiotics. Our research work will open new gateways to prepare MOFs-Perovskites nanocatalysts for exceptional CO2 conversion, organic pollutants and antibiotics degradation.

6.
J Colloid Interface Sci ; 665: 500-509, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38547631

RESUMO

Constructing a heterojunction by combining two semiconductors with similar band structures is a successful approach to obtaining photocatalysts with high efficiency. Herein, a CuPc/DR-MoS2 heterojunction involving copper phthalocyanine (CuPc) and molybdenum disulfide with S-rich vacancies (13.66%) is successfully prepared by the facile hydrothermal method. Experimental results and theoretical calculations firmly demonstrated that photoelectrons exhibit an S-scheme charge transfer mechanism in the CuPc/DR-MoS2 heterojunction. The S-scheme heterojunction system has proven significant advantages in promoting the charge separation and transfer of photogenerated carriers, enhancing visible-light responsiveness, and achieving robust photoredox capability. As a result, the optimized 3CuPc/DR-MoS2 S-scheme heterojunction exhibits photocatalytic yields of CO and CH4 at 200 and 111.6 µmol g-1h-1, respectively. These values are four times and 4.5 times greater than the photocatalytic yields of pure DR-MoS2. This study offers novel perspectives on the advancement of innovative and highly effective heterojunction photocatalysts.

7.
J Colloid Interface Sci ; 663: 31-42, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38387184

RESUMO

The construction of van der Waals (vdW) heterojunctions is a key approach for efficient and stable photocatalysts, attracting marvellous attention due to their capacity to enhance interfacial charge separation/transfer and offer reactive sites. However, when a vdW heterojunction is made through an ex-situ assembly, electron transmission faces notable obstacles at the components interface due to the substantial spacing and potential barrier. Herein, we present a novel strategy to address this challenge via wet chemistry by synthesizing a functionalized graphene-modulated Z-scheme vdW heterojunction of zinc phthalocyanine/tungsten trioxide (xZnPc/yG-WO3). The functionalized G-modulation forms an electron "bridge" across the ZnPc/WO3 interface to improve electron transfer, get rid of barriers, and ultimately facilitating the optimal transfer of excited photoelectrons from WO3 to ZnPc. The Zn2+ in ZnPc picks up these excited photoelectrons, turning CO2 into CO/CH4 (42/22 µmol.g-1.h-1) to deliver 17-times better efficiency than pure WO3. Therefore, the introduction of a molecular "bridge" as a means to establish an electron transfer conduit represents an innovative approach to fabricate efficient photocatalysts designed for the conversion of CO2 into valued yields.

8.
ACS Nano ; 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38318803

RESUMO

A rarely discussed phenomenon in the realm of photocatalytic materials involves the presence of gradient distributed dopants and defects from the interior to the surface. This intriguing characteristic has been successfully achieved in the case of ZnS through the incorporation of atomic monovalent copper ions (Cu+) and concurrent sulfur vacancies (Vs), resulting in a photocatalyst denoted as G-CZS1-x. Through the cooperative action of these atomic Cu dopants and Vs, G-CZS1-x significantly extends its photoabsorption range to encompass the full spectrum (200-2100 nm), which improves the solar utilization ability. This alteration enhances the efficiency of charge separation and optimizes Δ(H*) (free energy of hydrogen adsorption) to approach 0 eV for the hydrogen evolution reaction (HER). It is noteworthy that both surface-exposed atomic Cu and Vs act as active sites for photocatalysis. G-CZS1-x exhibits a significant H2 evolution rate of 1.01 mmol h-1 in the absence of a cocatalyst. This performance exceeds the majority of previously reported photocatalysts, exhibiting approximately 25-fold as ZnS, and 5-fold as H-CZS1-x with homogeneous distribution of equal content Cu dopants and Vs. In contrast to G-CZS1-x, the H adsorption on Cu sites for H-CZS1-x (ΔG(H*) = -1.22 eV) is excessively strong to inhibit the H2 release, and the charge separation efficiency for H-CZS1-x is relatively sluggish, revealing the positive role of a gradient distribution model of dopants and defects on activity enhancement. This work highlights the synergy of atomic dopants and defects in advancing photoactivity, as well as the significant benefit of the controllable distribution model of dopants and defects for photocatalysis.

9.
Chem Rec ; 24(3): e202300350, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355899

RESUMO

Gas sensors are crucial in environmental monitoring, industrial safety, and medical diagnostics. Due to the rising demand for precise and reliable gas detection, there is a rising demand for cutting-edge gas sensors that possess exceptional sensitivity, selectivity, and stability. Due to their tunable electrical properties, high-density surface-active sites, and significant surface-to-volume ratio, nanomaterials have been extensively investigated in this regard. The traditional gas sensors utilize homogeneous material for sensing where the adsorbed surface oxygen species play a vital role in their sensing activity. However, their performance for selective gas sensing is still unsatisfactory because the employed high temperature leads to the poor stability. The heterostructures nanomaterials can easily tune sensing performance and their different energy band structures, work functions, charge carrier concentration and polarity, and interfacial band alignments can be precisely designed for high-performance selective gas sensing at low temperature. In this review article, we discuss in detail the fundamentals of semiconductor gas sensing along with their mechanisms. Further, we highlight the existed challenges in semiconductor gas sensing. In addition, we review the recent advancements in semiconductor gas sensor design for applications from different perspective. Finally, the conclusion and future perspectives for improvement of the gas sensing performance are discussed.

10.
Heliyon ; 10(3): e25521, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38356588

RESUMO

Nanomaterials (NMs) have garnered significant attention in recent decades due to their versatile applications in a wide range of fields. Thanks to their tiny size, enhanced surface modifications, impressive volume-to-surface area ratio, magnetic properties, and customized optical dispersion. NMs experienced an incredible upsurge in biomedical applications including diagnostics, therapeutics, and drug delivery. This minireview will focus on notable examples of NMs that tackle important issues, demonstrating various aspects such as their design, synthesis, morphology, classification, and use in cutting-edge applications. Furthermore, we have classified and outlined the distinctive characteristics of the advanced NMs as nanoscale particles and hybrid NMs. Meanwhile, we emphasize the incredible potential of metal-organic frameworks (MOFs), a highly versatile group of NMs. These MOFs have gained recognition as promising candidates for a wide range of bio-applications, including bioimaging, biosensing, antiviral therapy, anticancer therapy, nanomedicines, theranostics, immunotherapy, photodynamic therapy, photothermal therapy, gene therapy, and drug delivery. Although advanced NMs have shown great potential in the biomedical field, their use in clinical applications is still limited by issues such as stability, cytotoxicity, biocompatibility, and health concerns. This review article provides a thorough analysis offering valuable insights for researchers investigating to explore new design, development, and expansion opportunities. Remarkably, we ponder the prospects of NMs and nanocomposites in conjunction with current technology.

11.
ACS Nano ; 18(1): 1214-1225, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150422

RESUMO

By substituting the oxygen evolution reaction (OER) with the anodic urea oxidation reaction (UOR), it not only reduces energy consumption for green hydrogen generation but also allows purification of urea-rich wastewater. Spin engineering of the d orbital and oxygen-containing adsorbates has been recognized as an effective pathway for enhancing the performance of electrocatalysts. In this work, we report the fabrication of a bifunctional electrocatalyst composed of amorphous RuO2-coated NiO ultrathin nanosheets (a-RuO2/NiO) with abundant amorphous/crystalline interfaces for hydrogen evolution reaction (HER) and UOR. Impressively, only 1.372 V of voltage is required to attain a current density of 10 mA cm-2 over a urea electrolyzer. The increased oxygen vacancies in a-RuO2/NiO by incorporation of amorphous RuO2 enhance the total magnetization and entail numerous spin-polarized electrons during the reaction, which speeds up the UOR reaction kinetics. The density functional theory study reveals that the amorphous/crystalline interfaces promote charge-carrier transfer, and the tailored d-band center endows the optimized adsorption of oxygen-generated intermediates. This kind of oxygen vacancy induced spin-polarized electrons toward boosting HER and UOR kinetics and provides a reliable reference for exploration of advanced electrocatalysts.

12.
Sci Total Environ ; 913: 169489, 2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38159747

RESUMO

Globally recognized as emergent contaminants, microplastics (MPs) are prevalent in aquaculture habitats and subject to intense management. Aquaculture systems are at risk of microplastic contamination due to various channels, which worsens the worldwide microplastic pollution problem. Organic contaminants in the environment can be absorbed by and interact with microplastic, increasing their toxicity and making treatment more challenging. There are two primary sources of microplastics: (1) the direct release of primary microplastics and (2) the fragmentation of plastic materials resulting in secondary microplastics. Freshwater, atmospheric and marine environments are also responsible for the successful migration of microplastics. Until now, microplastic pollution and its effects on aquaculture habitats remain insufficient. This article aims to provide a comprehensive review of the impact of microplastics on aquatic ecosystems. It highlights the sources and distribution of microplastics, their physical and chemical properties, and the potential ecological consequences they pose to marine and freshwater environments. The paper also examines the current scientific knowledge on the mechanisms by which microplastics affect aquatic organisms and ecosystems. By synthesizing existing research, this review underscores the urgent need for effective mitigation strategies and further investigation to safeguard the health and sustainability of aquatic ecosystems.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/toxicidade , Ecossistema , Plásticos , Monitoramento Ambiental , Poluentes Químicos da Água/análise
13.
Small ; : e2308908, 2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38105418

RESUMO

The environmental deterioration caused by dye wastewater discharge has received considerable attention in recent decades. One of the most promising approaches to addressing the aforementioned environmental issue is the development of photocatalysts with high solar energy consumption efficiency for the treatment of dye-contaminated water. In this study, a novel low-cost π-π biomass-derived black carbon modified g-C3 N4 coupled FeIn2 S4 composite (i.e., FeInS/BC-CN) photocatalyst is successfully designed and fabricated that reveals significantly improved photocatalytic performance for the degradation of Eosin Yellow (EY) dye in aqueous solution. Under dark and subsequent visible light irradiation, the amount optimized composite reveals 99% removal performance for EY dye, almost three-fold compared to that of the pristine FeInS and BC-CN counterparts. Further, it is confirmed by means of the electron spin resonance spectrometry, quenching experiments, and density functional theory (DFT) calculations, that the hydroxyl radicals (• OH) and superoxide radicals (• O2 - ) are the dominant oxidation species involved in the degradation process of EY dye. In addition, a systematic photocatalytic degradation route is proposed based on the resultant degradation intermediates detectedduring liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis. This work provides an innovative idea for the development of advanced photocatalysts to mitigate water pollution.

14.
ACS Appl Bio Mater ; 6(12): 5349-5359, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-37957165

RESUMO

Ionic substitution can effectively activate the surface of hydroxyapatite (HA) for bone repair and regeneration processes. Therefore in this study, magnesium (Mg)-, zinc (Zn)-, and Mg/Zn-codoped HA was prepared by a hydrothermal method. The results of experimental and first-principles calculations verify the existence of Mg and Zn ions in the HA structure by altering cell parameters, crystallinity, and particle size. The results also showed that Mg and Zn are actively accommodated at the Ca(1) and Ca(2) positions, which not only inhibit HA formation but also promote calcium-deficient HA, and when the codoping content increased to 10%Mg and 10%Zn, the HA transformed completely to the whitlockite phase. Furthermore, the impact of codoping on biocompatibility was examined by employing MC3T3 cells. The in vitro study revealed that 5%Mg and 5%Zn single and -codoped HA promoted the proliferation of MC3T3 cells and 5%Mg-doped and -codoped HA stimulated MC3T3 cell differentiation, while 5%Zn-doped and -codoped HA revealed worthy antibacterial properties. Overall, the obtained results demonstrate that cosubstituted HA (5%Mg and 5%Zn) is promising, which not only eradicates bacteria (Escherichia coli and Staphylococcus aureus) but also induces bone regeneration. These findings suggest that 5%Mg and 5%Zn binary-substituted HA is a very promising biomaterial for hard tissue scaffolds and bone repair.


Assuntos
Durapatita , Zinco , Durapatita/farmacologia , Durapatita/química , Zinco/farmacologia , Zinco/química , Magnésio/farmacologia , Magnésio/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/química , Antibacterianos/farmacologia , Antibacterianos/química
15.
Nanoscale ; 15(48): 19604-19616, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38018426

RESUMO

Developing low-cost, high-efficiency and stable electrocatalysts for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) is crucial but highly challenging. Density functional theory (DFT) calculations reveal that doping ruthenium (Ru) into catalysts can effectively optimize their electronic structure, hence leading to an optimal Gibbs free energy on the catalyst surface. Herein, an ultra-low Ru (about 2.34 wt%)-doped Ni3Se2 nanowire catalyst (i.e., Ru/Ni3Se2) supported on nickel foam has been fabricated by a hydrothermal reaction followed by a chemical etching process. The unique three-dimensional (3D) interconnected nanowires not only endow Ru and Ni3Se2 with uniform distribution and coupling, but also provide higher electrical conductivity, more active sites, an optimized electronic structure and favorable reaction kinetics. Therefore, the as-obtained Ru/Ni3Se2 catalyst exhibits excellent electrocatalytic performance, with low overpotentials of 24 and 211 mV to supply a current density value of 10 mA cm-2 towards the HER and OER in an alkaline environment, respectively. Notably, the as-fabricated Ru/Ni3Se2 catalyst only requires a low voltage of 1.476 V to derive a current density of 10 mA cm-2 in the constructed two-electrode alkaline electrolyzer and exhibits exceptionally high stability. This work will provide a novel strategy for the design and fabrication of low-cost and high-performance bifunctional electrocatalysts for hydrogen production by water electrolysis.

16.
Artigo em Inglês | MEDLINE | ID: mdl-37787891

RESUMO

Ulcerative colitis (UC), an inflammation of the colon lining, represents the main form of inflammatory bowel disease IBD. Nutritional therapy is extremely important in the management of ulcerative colitis. Fish oil contains long-chain omega-3 polyunsaturated fatty acids, which have beneficial effects on health, including anti-inflammatory effects. This study aims to investigate the benefits of bluefin tuna oil extracted by the Soxhlet method in vitro by determining the anti-radical and anti-inflammatory activities and in vivo by evaluating the preventive and curative effects. The experiments were carried out using two doses of oil (100 and 260 mg/kg) and glutamine (400 and 1000 mg/kg) on the acetic acid-induced UC model. UC has been induced in Wistar rats by intrarectal administration of a single dose of 1 mL acetic acid (5% v/v in distilled water). The obtained results indicate that tuna oil and glutamine have a significant anti-free radical effect. Tuna oil has a marked anti-inflammatory power based on membrane stabilization and inhibiting protein denaturation. The reduction of various UC parameters, such as weight loss, disease activity score DAS, and colonic ulceration in rats pre-treated with tuna oil and glutamine, demonstrate that these treatments have a significant effect on UC. Total glutathione GSH, superoxide dismutase SOD, and catalase activities are significantly restored in the tuna oil and glutamine groups, while lipid peroxidation has been markedly reduced.

17.
Chem Commun (Camb) ; 59(75): 11280-11283, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37665259

RESUMO

Transition metal ions (M = Ag+, Cu2+, Co2+, and Cr3+) are surface or homogeneously doped into ZnS via facile cation-exchange reaction, and while Ag+ and Cu2+ doping does not induce sulphur vacancies (Vs) or zinc vacancies (VZn), Co2+ and Cr3+ doping induces Vs. The surface doped catalysts exhibit greatly higher activity than the ZnS and homogenous doped catalysts for H2 evolution and CO2 reduction. The important role of the doping state on affecting the photo-absorption, carrier separation efficiency, and photoreaction kinetics has been systemically investigated and proposed. This work sheds light on the future design and fabrication of high-performance photocatalysts by element doping.

18.
Sci Total Environ ; 900: 166137, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37595927

RESUMO

This research is devoted to assessing the pollution within a Mediterranean Sea area in the East coast of Algeria, which is known for its port and industrial activities. This study aims to assess the health status of the Gulf of Annaba located in the extreme North-East of Algeria by examining the contamination level by trace elements (Cu, Zn, Pb, Cd, Hg) in the sediments and muscles of Mugil cephalus fish. The obtained results manifest significant variations in metal levels in the sediments throughout the stations and the sampling seasons. The contamination by (Zn, Cu, Pb, Cd) of Joannonville and Sidi Salem stations is observed during both seasons whereas at the Chapuis station occurs only during the summer. The contamination indices are higher than 3, hence classifying the sediments of these three stations as "sediments at risk". Joannonville station manifests high levels of Hg only during the summer. For the muscles of M. cephalus, the contamination levels are found to be dependent on the species and the studied station. The fish inhabiting Joannonville and Sidi Salem show higher levels of (Zn, Pb, Cd) compared to the FAO/WHO standards, whereas the Pb level at Chapuis exceeds the standard during summer. Accordingly, the consumption of fish from Joannonville, Sidi Salem and Chapuis stations presents a serious threat regarding the toxicological risks based on the observed levels of contamination.


Assuntos
Mercúrio , Smegmamorpha , Oligoelementos , Animais , Estações do Ano , Argélia , Cádmio , Chumbo , Peixes
19.
Aquat Toxicol ; 261: 106620, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37399782

RESUMO

Contaminated wastewater (WW) can cause severe hazards to numerous delicate ecosystems and associated life forms. In addition, human health is negatively impacted by the presence of microorganisms in water. Multiple pathogenic microorganisms in contaminated water, including bacteria, fungi, yeast, and viruses, are vectors for several contagious diseases. To avoid the negative impact of these pathogens, WW must be free from pathogens before being released into stream water or used for other reasons. In this review article, we have focused on pathogenic bacteria in WW and summarized the impact of the different types of pathogenic bacteria on marine organisms. Moreover, we presented a variety of physical and chemical techniques that have been developed to provide a pathogen-free aquatic environment. Among the techniques, membrane-based techniques for trapping hazardous biological contaminants are gaining popularity around the world. Besides, novel and recent advancements in nanotechnological science and engineering suggest that many waterborne pathogens could be inactivated using nano catalysts, bioactive nanoparticles, nanostructured catalytic membranes, nanosized photocatalytic structures, and electrospun nanofibers and processes have been thoroughly examined.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Humanos , Águas Residuárias , Organismos Aquáticos , Ecossistema , Poluentes Químicos da Água/toxicidade , Bactérias , Água/química
20.
Environ Sci Pollut Res Int ; 30(36): 85792-85802, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37392297

RESUMO

The rapid growth in population and industrialization has given rise to serious environmental issues, especially the water pollution. Photocatalysis with the assist of semiconductor photocatalysts has been considered as an advanced oxidation technique for degrading a variety of pollutants under solar irradiation. In this work, we have fabricated SnO2-TiO2 heterostructures with different ordered layers of SnO2 and TiO2 via the sol-gel dip-coating technique and utilized in photocatalysis for degradation of methyl blue dye under UV irradiation. The influence of the layer's position on SnO2 and TiO2 properties is investigated via the various techniques. The grazing incidence X-ray diffraction (GIXRD) analysis reveals that the as-prepared films exhibit pure anatase TiO2 and kesterite SnO2 phases. The 2SnO2/2TiO2 heterostructure exhibit the maximum crystallite size and smallest deviation from the ideal structure. Scanning electron microscopy cross-section images manifest good adhesion of the layers to each other and to the substrate. Fourier transform infrared spectroscopy reveals the characteristic vibration modes of SnO2 and TiO2 phases. UV-visible spectroscopy measurements indicate that all films exhibit high transparency (T = 80%) and the SnO2 film reveals a direct band gap of 3.6 eV, while the TiO2 film exhibits an indirect band gap of 2.9 eV. The optimal 2SnO2/2TiO2 heterostructure film revealed best photocatalytic degradation performance and the reaction rate constant for methylene blue solution under UV irradiation. This work will trigger the development of highly efficient heterostructure photocatalysts for environmental remediation.


Assuntos
Titânio , Raios Ultravioleta , Titânio/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...