Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Beilstein J Org Chem ; 20: 1029-1036, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38746653

RESUMO

The RNA-dependent RNA polymerase (RdRp) represents a prominent target in the discovery and development of new antivirotics against RNA viruses, inhibiting the replication process. One of the most targeted RNA viruses of the last years is, without doubt, SARS-CoV-2, the cause of the recent COVID-19 pandemic. HeE1-2Tyr, a known inhibitor of flaviviral RdRp, has been discovered to also have antiviral potency against this coronavirus. In this study, we report three distinct modifications of HeE1-2Tyr: conversion of the core from a benzothiazole to a benzoxazole moiety and two different scaffold simplifications, respectively. We provide a novel synthetic approach and, in addition, evaluate the final molecules in an in vitro polymerase assay for biological activity.

2.
EMBO J ; 43(10): 2035-2061, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38627600

RESUMO

Phosphatidylinositol (PI) is the precursor lipid for the minor phosphoinositides (PPIns), which are critical for multiple functions in all eukaryotic cells. It is poorly understood how phosphatidylinositol, which is synthesized in the ER, reaches those membranes where PPIns are formed. Here, we used VT01454, a recently identified inhibitor of class I PI transfer proteins (PITPs), to unravel their roles in lipid metabolism, and solved the structure of inhibitor-bound PITPNA to gain insight into the mode of inhibition. We found that class I PITPs not only distribute PI for PPIns production in various organelles such as the plasma membrane (PM) and late endosomes/lysosomes, but that their inhibition also significantly reduced the levels of phosphatidylserine, di- and triacylglycerols, and other lipids, and caused prominent increases in phosphatidic acid. While VT01454 did not inhibit Golgi PI4P formation nor reduce resting PM PI(4,5)P2 levels, the recovery of the PM pool of PI(4,5)P2 after receptor-mediated hydrolysis required both class I and class II PITPs. Overall, these studies show that class I PITPs differentially regulate phosphoinositide pools and affect the overall cellular lipid landscape.


Assuntos
Fosfatidilinositóis , Proteínas de Transferência de Fosfolipídeos , Humanos , Fosfatidilinositóis/metabolismo , Proteínas de Transferência de Fosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Metabolismo dos Lipídeos , Membrana Celular/metabolismo , Células HeLa , Organelas/metabolismo , Endossomos/metabolismo , Animais
3.
Structure ; 32(4): 433-439.e4, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38325369

RESUMO

The cGAS-STING pathway is a crucial part of innate immunity; it serves to detect DNA in the cytoplasm and to defend against certain cancers, viruses, and bacteria. We designed and synthesized fluorinated carbocyclic cGAMP analogs, MD1203 and MD1202D (MDs), to enhance their stability and their affinity for STING. These compounds demonstrated exceptional activity against STING. Despite their distinct chemical modifications relative to the canonical cyclic dinucleotides (CDNs), crystallographic analysis revealed a binding mode with STING that was consistent with the canonical CDNs. Importantly, MDs were resistant to cleavage by viral poxin nucleases and MDs-bound poxin adopted an unliganded-like conformation. Moreover, MDs complexed with poxin showed a conformation distinct from cGAMP bound to poxin, closely resembling their conformation when bound to STING. In conclusion, the development of MD1203 and MD1202D showcases their potential as potent STING activators with remarkable stability against poxin-mediated degradation-a crucial characteristic for future development of antivirals.


Assuntos
Neoplasias , Nucleotídeos Cíclicos , Humanos , Nucleotídeos Cíclicos/química , Nucleotídeos Cíclicos/metabolismo , Nucleotidiltransferases/química , Imunidade Inata
4.
bioRxiv ; 2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-37873443

RESUMO

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has led to significant global morbidity and mortality. A crucial viral protein, the non-structural protein 14 (nsp14), catalyzes the methylation of viral RNA and plays a critical role in viral genome replication and transcription. Due to the low mutation rate in the nsp region among various SARS-CoV-2 variants, nsp14 has emerged as a promising therapeutic target. However, discovering potential inhibitors remains a challenge. In this work, we introduce a computational pipeline for the rapid and efficient identification of potential nsp14 inhibitors by leveraging virtual screening and the NCI open compound collection, which contains 250,000 freely available molecules for researchers worldwide. The introduced pipeline provides a cost-effective and efficient approach for early-stage drug discovery by allowing researchers to evaluate promising molecules without incurring synthesis expenses. Our pipeline successfully identified seven promising candidates after experimentally validating only 40 compounds. Notably, we discovered NSC620333, a compound that exhibits a strong binding affinity to nsp14 with a dissociation constant of 427 ± 84 nM. In addition, we gained new insights into the structure and function of this protein through molecular dynamics simulations. We identified new conformational states of the protein and determined that residues Phe367, Tyr368, and Gln354 within the binding pocket serve as stabilizing residues for novel ligand interactions. We also found that metal coordination complexes are crucial for the overall function of the binding pocket. Lastly, we present the solved crystal structure of the nsp14-MTase complexed with SS148 (PDB:8BWU), a potent inhibitor of methyltransferase activity at the nanomolar level (IC50 value of 70 ± 6 nM). Our computational pipeline accurately predicted the binding pose of SS148, demonstrating its effectiveness and potential in accelerating drug discovery efforts against SARS-CoV-2 and other emerging viruses.

5.
Bioorg Med Chem Lett ; 97: 129567, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38008339

RESUMO

In human cells, receptor-interacting protein kinase 2 (RIPK2) is mainly known to mediate downstream enzymatic cascades from the nucleotide-binding oligomerization domain-containing receptors 1 and 2 (NOD1/2), which are regulators of pro-inflammatory signaling. Thus, the targeted inhibition of RIPK2 has been proposed as a pharmacological strategy for the treatment of a variety of pathologies, in particular inflammatory and autoimmune diseases. In this work, we designed and developed novel thieno[2,3d]pyrimidine derivatives, in order to explore their activity and selectivity as RIPK2 inhibitors. Primary in vitro evaluations of the new molecules against purified RIPKs (RIPK1-4) demonstrated outstanding inhibitory potency and selectivity for the enzyme RIPK2. Moreover, investigations for efficacy against the RIPK2-NOD1/2 signaling pathways, conducted in living cells, showed their potency could be tuned towards a low nanomolar range. This could be achieved by solely varying the substitutions at position 6 of the thieno[2,3d]pyrimidine scaffold. A subset of lead inhibitors were ultimately evaluated for selectivity against 58 human kinases other than RIPKs, displaying great specificities. We therefore obtained new inhibitors that might serve as starting point for the preparation of targeted tools, which could be useful to gain a better understanding of biological roles and clinical potential of RIPK2.


Assuntos
Inflamação , Proteína Serina-Treonina Quinase 2 de Interação com Receptor , Transdução de Sinais , Humanos , Inflamação/tratamento farmacológico , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo
6.
Antiviral Res ; 218: 105714, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37689311

RESUMO

The RNA 2'-O methyltransferase (MTase) VP39 of the monkeypox virus (MpxV) participates in RNA capping within poxviruses. Sub-micromolar inhibitors targeting this enzyme were already reported. However, these 7-deaza analogs of S-adenosyl methionine (SAH) had not been tested in cellular assays until now. In this study, we employed plaque assays and cytopathic effect-based assays to evaluate the effectiveness of these compounds. All tested compounds demonstrated antiviral activity against MpxV, with EC50 values ranging from 0.06 to 2.7 µM. Nevertheless, some of these compounds also exhibited cytotoxicity in HeLa cells, while others showed no toxicity. Notably, the non-toxic compounds featured a large aromatic substituent at the 7-deaza position, whereas the toxic compounds had a small substituent at the same position. These findings suggest that VP39 represents a bona fide target for the development of antiviral drugs against MpxV.

7.
Biochimie ; 215: 42-49, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683994

RESUMO

Lipid biosensors are molecular tools used both in vivo and in vitro applications, capable of selectively detecting specific types of lipids in biological membranes. However, despite their extensive use, there is a lack of systematic characterization of their binding properties in various membrane conditions. The purpose of this study was to investigate the impact of membrane properties, such as fluidity and membrane charge, on the sensitivity of two lipid biosensors, LactC2 and P4M, to their target lipids, phosphatidylserine (PS) or phosphatidylinositol 4-phosphate (PI4P), respectively. Dual-color fluorescence cross-correlation spectroscopy, employed in this study, provided a useful technique to investigate interactions of these recombinant fluorescent biosensors with liposomes of varying compositions. The results of the study demonstrate that the binding of the LactC2 biosensor to low levels of PS in the membrane is highly supported by the presence of anionic lipids or membrane fluidity. However, at high PS levels, the presence of anionic lipids does not further enhance binding of LactC2. In contrast, neither membrane charge, nor membrane fluidity significantly affect the binding affinity of P4M to PI4P. These findings provide valuable insights into the role of membrane properties on the binding properties of lipid biosensors.


Assuntos
Técnicas Biossensoriais , Fosfatidilserinas , Fosfatidilserinas/metabolismo , Lipossomos/química , Membrana Celular/metabolismo
8.
Eur J Med Chem ; 259: 115685, 2023 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-37567057

RESUMO

Cyclic dinucleotides (CDNs) trigger the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway, which plays a key role in cytosolic DNA sensing and thus in immunomodulation against infections, cell damage and cancer. However, cancer immunotherapy trials with CDNs have shown immune activation, but not complete tumor regression. Nevertheless, we designed a novel class of CDNs containing vinylphosphonate based on a STING-affinity screening assay. In vitro, acyloxymethyl phosphate/phosphonate prodrugs of these vinylphosphonate CDNs were up to 1000-fold more potent than the clinical candidate ADU-S100. In vivo, the lead prodrug induced tumor-specific T cell priming and facilitated tumor regression in the 4T1 syngeneic mouse model of breast cancer. Moreover, we solved the crystal structure of this ligand bound to the STING protein. Therefore, our findings not only validate the therapeutic potential of vinylphosphonate CDNs but also open up opportunities for drug development in cancer immunotherapy bridging innate and adaptive immunity.


Assuntos
Neoplasias , Nucleotídeos Cíclicos , Animais , Camundongos , Nucleotídeos Cíclicos/farmacologia , Nucleotídeos Cíclicos/metabolismo , DNA , Neoplasias/tratamento farmacológico , Imunoterapia , Imunidade Inata
9.
Eur J Med Chem ; 260: 115717, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598483

RESUMO

Receptor-interacting protein kinases 2 and 3 (RIPK2 and RIPK3) are considered attractive therapeutic enzyme targets for the treatment of a multitude of inflammatory diseases and cancers. In this study, we developed three interrelated series of novel quinazoline-based derivatives to investigate the effects of extensive modifications of positions 6 and 7 of the central core on the inhibitory activity and the selectivity against these RIPKs. The design of the derivatives was inspired by analyses of available literary knowledge on both RIPK2 and RIPK3 in complex with known quinazoline or quinoline inhibitors. Enzymatic investigations for bioactivity of the prepared molecules against purified RIPKs (RIPK1-4) shed light on multiple potent and selective RIPK2 and dual RIPK2/3 inhibitors. Furthermore, evaluations in living cells against the RIPK2-NOD1/2-mediated signaling pathways, identified as the potential primary targets, demonstrated nanomolar inhibition for a majority of the compounds. In addition, we have demonstrated overall good stability of various lead inhibitors in both human and mouse microsomes and plasma. Several of these compounds also were evaluated for selectivity across 58 human kinases other than RIPKs, exhibiting outstanding specificity profiles. We have thus clearly demonstrated that tuning appropriate substitutions at positions 6 and 7 of the developed quinazoline derivatives may lead to interesting potency and specificities against RIPK2 and RIPK3. This knowledge might therefore be employed for the targeted preparation of new, highly potent and selective tools against these RIPKs, which could be of utility in biological and clinical research.


Assuntos
Microssomos , Quinazolinas , Humanos , Animais , Camundongos , Quinazolinas/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor
10.
bioRxiv ; 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37645851

RESUMO

Proteasomes are essential for protein homeostasis in mammalian cells1-4 and in protozoan parasites such as Trichomonas vaginalis (Tv).5 Tv and other protozoan 20S proteasomes have been validated as druggable targets.6-8 However, in the case of Tv 20S proteasome (Tv20S), biochemical and structural studies were impeded by low yields and purity of the native proteasome. We successfully made recombinant Tv20S by expressing all seven α and seven ß subunits together with the Ump-1 chaperone in insect cells. We isolated recombinant proteasome and showed that it was biochemically indistinguishable from the native enzyme. We confirmed that the recombinant Tv20S is inhibited by the natural product marizomib (MZB)9 and the recently developed peptide inhibitor carmaphycin-17 (CP-17)8,10. Specifically, MZB binds to the ß1, ß2 and ß5 subunits, while CP-17 binds the ß2 and ß5 subunits. Next, we obtained cryo-EM structures of Tv20S in complex with these covalent inhibitors at 2.8Å resolution. The structures revealed the overall fold of the Tv20S and the binding mode of MZB and CP-17. Our work explains the low specificity of MZB and higher specificity of CP-17 towards Tv20S as compared to human proteasome and provides the platform for the development of Tv20S inhibitors for treatment of trichomoniasis.

11.
Cells ; 12(15)2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37566053

RESUMO

ORPs are lipid-transport proteins belonging to the oxysterol-binding protein family. They facilitate the transfer of lipids between different intracellular membranes, such as the ER and plasma membrane. We have solved the crystal structure of the ORP8 lipid transport domain (ORD8). The ORD8 exhibited a ß-barrel fold composed of anti-parallel ß-strands, with three α-helices replacing ß-strands on one side. This mixed alpha-beta structure was consistent with previously solved structures of ORP2 and ORP3. A large cavity (≈1860 Å3) within the barrel was identified as the lipid-binding site. Although we were not able to obtain a lipid-bound structure, we used computer simulations based on our crystal structure to dock PS and PI4P molecules into the putative lipid-binding site of the ORD8. Comparative experiments between the short ORD8ΔLid (used for crystallography) and the full-length ORD8 (lid containing) revealed the lid's importance for stable lipid binding. Fluorescence assays revealed different transport efficiencies for PS and PI4P, with the lid slowing down transport and stabilizing cargo. Coarse-grained simulations highlighted surface-exposed regions and hydrophobic interactions facilitating lipid bilayer insertion. These findings enhance our comprehension of ORD8, its structure, and lipid transport mechanisms, as well as provide a structural basis for the design of potential inhibitors.


Assuntos
Proteínas de Transporte , Lipídeos , Transporte Biológico , Proteínas de Transporte/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Lipídeos/química
12.
Antiviral Res ; 216: 105663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37421984

RESUMO

Mpox is a zoonotic disease caused by the mpox virus (MPXV), which has gained attention due to its rapid and widespread transmission, with reports from more than 100 countries. The virus belongs to the Orthopoxvirus genus, which also includes variola virus and vaccinia virus. In poxviruses, the RNA cap is crucial for the translation and stability of viral mRNAs and also for immune evasion. This study presents the crystal structure of the mpox 2'-O-methyltransfarase VP39 in complex with a short cap-0 RNA. The RNA substrate binds to the protein without causing any significant changes to its overall fold and is held in place by a combination of electrostatic interactions, π-π stacking and hydrogen bonding. The structure also explains the mpox VP39 preference for a guanine base at the first position; it reveals that guanine forms a hydrogen bond that an adenine would not be able to form.


Assuntos
Mpox , Capuzes de RNA , Humanos , Capuzes de RNA/metabolismo , Metilação , Metiltransferases/química , Sítios de Ligação , Proteínas Virais/genética
13.
J Neurosci ; 43(26): 4755-4774, 2023 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-37286354

RESUMO

NMDA receptors (NMDARs) are ionotropic glutamate receptors that play a key role in excitatory neurotransmission. The number and subtype of surface NMDARs are regulated at several levels, including their externalization, internalization, and lateral diffusion between the synaptic and extrasynaptic regions. Here, we used novel anti-GFP (green fluorescent protein) nanobodies conjugated to either the smallest commercially available quantum dot 525 (QD525) or the several nanometer larger (and thus brighter) QD605 (referred to as nanoGFP-QD525 and nanoGFP-QD605, respectively). Targeting the yellow fluorescent protein-tagged GluN1 subunit in rat hippocampal neurons, we compared these two probes to a previously established larger probe, a rabbit anti-GFP IgG together with a secondary IgG conjugated to QD605 (referred to as antiGFP-QD605). The nanoGFP-based probes allowed faster lateral diffusion of the NMDARs, with several-fold increased median values of the diffusion coefficient (D). Using thresholded tdTomato-Homer1c signals to mark synaptic regions, we found that the nanoprobe-based D values sharply increased at distances over 100 nm from the synaptic edge, while D values for antiGFP-QD605 probe remained unchanged up to a 400 nm distance. Using the nanoGFP-QD605 probe in hippocampal neurons expressing the GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits, we detected subunit-dependent differences in the synaptic localization of NMDARs, D value, synaptic residence time, and synaptic-extrasynaptic exchange rate. Finally, we confirmed the applicability of the nanoGFP-QD605 probe to study differences in the distribution of synaptic NMDARs by comparing to data obtained with nanoGFPs conjugated to organic fluorophores, using universal point accumulation imaging in nanoscale topography and direct stochastic optical reconstruction microscopy.SIGNIFICANCE STATEMENT Our study systematically compared the localization and mobility of surface NMDARs containing GFP-GluN2A, GFP-GluN2B, or GFP-GluN3A subunits expressed in rodent hippocampal neurons, using anti-green fluorescent protein (GFP) nanobodies conjugated to the quantum dot 605 (nanoGFP-QD605), as well as nanoGFP probes conjugated with small organic fluorophores. Our comprehensive analysis showed that the method used to delineate the synaptic region plays an important role in the study of synaptic and extrasynaptic pools of NMDARs. In addition, we showed that the nanoGFP-QD605 probe has optimal parameters for studying the mobility of NMDARs because of its high localization accuracy comparable to direct stochastic optical reconstruction microscopy and longer scan time compared with universal point accumulation imaging in nanoscale topography. The developed approaches are readily applicable to the study of any GFP-labeled membrane receptors expressed in mammalian neurons.


Assuntos
Receptores de N-Metil-D-Aspartato , Anticorpos de Domínio Único , Ratos , Animais , Coelhos , Receptores de N-Metil-D-Aspartato/metabolismo , Anticorpos de Domínio Único/metabolismo , Sinapses/fisiologia , Hipocampo/metabolismo , Neurônios/metabolismo , Imunoglobulina G/metabolismo , Mamíferos
14.
Arch Virol ; 168(7): 192, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37378908

RESUMO

Monkeypox, or mpox, is a disease that has recently resurfaced and spread across the globe. Despite the availability of an FDA-approved vaccine (JYNNEOS) and an effective drug (tecovirimat), concerns remain over the possible recurrence of a viral pandemic. Like any other virus, mpox virus must overcome the immune system to replicate. Viruses have evolved various strategies to overcome both innate and adaptive immunity. Poxviruses possess an unusual nuclease, poxin, which cleaves 2'-3'-cGAMP, a cyclic dinucleotide, which is an important second messenger in the cGAS-STING signaling pathway. Here, we present the crystal structure of mpox poxin. The structure reveals a conserved, predominantly ß-sheet fold and highlights the high conservation of the cGAMP binding site and of the catalytic residues His17, Tyr138, and Lys142. This research suggests that poxin inhibitors could be effective against multiple poxviruses.


Assuntos
Mpox , Poxviridae , Humanos , Monkeypox virus , Transdução de Sinais , Desenho de Fármacos
15.
bioRxiv ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37066163

RESUMO

The protozoan parasite, Trichomonas vaginalis (Tv) causes trichomoniasis, the most common, non-viral, sexually transmitted infection in the world. Only two closely related drugs are approved for its treatment. The accelerating emergence of resistance to these drugs and lack of alternative treatment options poses an increasing threat to public health. There is an urgent need for novel effective anti-parasitic compounds. The proteasome is a critical enzyme for T. vaginalis survival and was validated as a drug target to treat trichomoniasis. However, to develop potent inhibitors of the T. vaginalis proteasome, it is essential that we understand which subunits should be targeted. Previously, we identified two fluorogenic substrates that were cleaved by T. vaginalis proteasome, however after isolating the enzyme complex and performing an in-depth substrate specificity study, we have now designed three fluorogenic reporter substrates that are each specific for one catalytic subunit. We screened a library of peptide epoxyketone inhibitors against the live parasite and evaluated which subunits are targeted by the top hits. Together we show that targeting of the ß5 subunit of T. vaginalis is sufficient to kill the parasite, however, targeting of ß5 plus either ß1 or ß2 results in improved potency.

16.
Nat Commun ; 14(1): 2259, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37080993

RESUMO

Monkeypox is a disease with pandemic potential. It is caused by the monkeypox virus (MPXV), a double-stranded DNA virus from the Poxviridae family, that replicates in the cytoplasm and must encode for its own RNA processing machinery including the capping machinery. Here, we present crystal structures of its 2'-O-RNA methyltransferase (MTase) VP39 in complex with the pan-MTase inhibitor sinefungin and a series of inhibitors that were discovered based on it. A comparison of this 2'-O-RNA MTase with enzymes from unrelated single-stranded RNA viruses (SARS-CoV-2 and Zika) reveals a conserved sinefungin binding mode, implicating that a single inhibitor could be used against unrelated viral families. Indeed, several of our inhibitors such as TO507 also inhibit the coronaviral nsp14 MTase.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , Metiltransferases/metabolismo , SARS-CoV-2/genética , Monkeypox virus/genética , Monkeypox virus/metabolismo , Proteínas não Estruturais Virais/química , RNA , Zika virus/genética , RNA Viral/genética
17.
Biochim Biophys Acta Gen Subj ; 1867(4): 130319, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764586

RESUMO

Seven coronaviruses have infected humans (HCoVs) to-date. SARS-CoV-2 caused the current COVID-19 pandemic with the well-known high mortality and severe socioeconomic consequences. MERS-CoV and SARS-CoV caused epidemic of MERS and SARS, respectively, with severe respiratory symptoms and significant fatality. However, HCoV-229E, HCoV-NL63, HCoV-HKU1, and HCoV-OC43 cause respiratory illnesses with less severe symptoms in most cases. All coronaviruses use RNA capping to evade the immune systems of humans. Two viral methyltransferases, nsp14 and nsp16, play key roles in RNA capping and are considered valuable targets for development of anti-coronavirus therapeutics. But little is known about the kinetics of nsp10-nsp16 methyltransferase activities of most HCoVs, and reliable assays for screening are not available. Here, we report the expression, purification, and kinetic characterization of nsp10-nsp16 complexes from six HCoVs in parallel with previously characterized SARS-CoV-2. Probing the active sites of all seven by SS148 and WZ16, the two recently reported dual nsp14 / nsp10-nsp16 inhibitors, revealed pan-inhibition. Overall, our study show feasibility of developing broad-spectrum dual nsp14 / nsp10-nsp16-inhibitor therapeutics.


Assuntos
COVID-19 , Humanos , Metiltransferases/química , Pandemias , RNA , SARS-CoV-2/genética
18.
Chemistry ; 29(20): e202203958, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36617500

RESUMO

Here, we present remarkable epoxyketone-based proteasome inhibitors with low nanomolar in vitro potency for blood-stage Plasmodium falciparum and low cytotoxicity for human cells. Our best compound has more than 2,000-fold greater selectivity for erythrocytic-stage P. falciparum over HepG2 and H460 cells, which is largely driven by the accommodation of the parasite proteasome for a D-amino acid in the P3 position and the preference for a difluorobenzyl group in the P1 position. We isolated the proteasome from P. falciparum cell extracts and determined that the best compound is 171-fold more potent at inhibiting the ß5 subunit of P. falciparum proteasome when compared to the same subunit of the human constitutive proteasome. These compounds also significantly reduce parasitemia in a P. berghei mouse infection model and prolong survival of animals by an average of 6 days. The current epoxyketone inhibitors are ideal starting compounds for orally bioavailable anti-malarial drugs.


Assuntos
Antimaláricos , Plasmodium , Camundongos , Animais , Humanos , Inibidores de Proteassoma/química , Complexo de Endopeptidases do Proteassoma/química , Plasmodium falciparum , Antimaláricos/farmacologia
19.
J Med Chem ; 65(20): 14082-14103, 2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36201304

RESUMO

Cyclic dinucleotides (CDNs) are second messengers that activate stimulator of interferon genes (STING). The cGAS-STING pathway plays a promising role in cancer immunotherapy. Here, we describe the synthesis of CDNs containing 7-substituted 7-deazapurine moiety. We used mouse cyclic GMP-AMP synthase and bacterial dinucleotide synthases for the enzymatic synthesis of CDNs. Alternatively, 7-(het)aryl 7-deazapurine CDNs were prepared by Suzuki-Miyaura cross-couplings. New CDNs were tested in biochemical and cell-based assays for their affinity to human STING. Eight CDNs showed better activity than 2'3'-cGAMP, the natural ligand of STING. The effect on cytokine and chemokine induction was also evaluated. The best activities were observed for CDNs bearing large aromatic substituents that point above the CDN molecule. We solved four X-ray structures of complexes of new CDNs with human STING. We observed π-π stacking interactions between the aromatic substituents and Tyr240 that are involved in the stabilization of CDN-STING complexes.


Assuntos
Proteínas de Membrana , Nucleotídeos Cíclicos , Camundongos , Animais , Humanos , Nucleotídeos Cíclicos/química , Ligantes , Proteínas de Membrana/metabolismo , Nucleotidiltransferases , Citocinas , Interferons
20.
Bioorg Med Chem Lett ; 76: 129010, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36184029

RESUMO

Novel 4-aminoquinazoline-6-carboxamide derivatives bearing differently substituted aryl or heteroaryl groups at position 7 in the core were rationally designed, synthesized and evaluated for biological activity in vitro as phosphatidylinositol 4-kinase IIα (PI4K2A) inhibitors. The straightforward approach described here enabled the sequential, modular synthesis and broad functionalization of the scaffold in a mere six steps. The SAR investigation reported here is based on detailed structural analysis of the conserved binding mode of ATP and other adenine derivatives to the catalytic site of type II PI4Ks, combined with extensive docking studies. Several compounds exhibited significant activity against PI4K2A. Moreover, we solved a crystal structure of PI4K2B in complex with one of our lead ligand candidates, which validated the ligand binding site and pose predicted by our docking-based ligand model. These discoveries suggest that our structure-based approach may be further developed and employed to synthesize new inhibitors with optimized potency and selectivity for this class of PI4Ks.


Assuntos
1-Fosfatidilinositol 4-Quinase , Trifosfato de Adenosina , 1-Fosfatidilinositol 4-Quinase/química , 1-Fosfatidilinositol 4-Quinase/metabolismo , Ligantes , Trifosfato de Adenosina/metabolismo , Adenina , Relação Estrutura-Atividade , Desenho de Fármacos , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...