Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(7)2023 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-37049243

RESUMO

Tissue-engineering technologies have the potential to provide an effective approach to bone regeneration. Based on the published literature and data from our laboratory, two biomaterial inks containing PLGA and blended with graphene nanoparticles were fabricated. The biomaterial inks consisted of two forms of commercially available PLGA with varying ratios of LA:GA (65:35 and 75:25) and molecular weights of 30,000-107,000. Each of these forms of PLGA was blended with a form containing a 50:50 ratio of LA:GA, resulting in ratios of 50:65 and 50:75, which were subsequently mixed with a 0.05 wt% low-oxygen-functionalized derivative of graphene. Scanning electron microscopy showed interconnected pores in the lattice structures of each scaffold. The cytocompatibility of human ADMSCs transduced with a red fluorescent protein (RFP) was evaluated in vitro. The in vivo biocompatibility and the potential to repair bones were evaluated in a critically sized 5 mm mechanical load-bearing segmental femur defect model in rats. Bone repair was monitored by radiological, histological, and microcomputed tomography methods. The results showed that all of the constructs were biocompatible and did not exhibit any adverse effects. The constructs containing PLGA (50:75)/graphene alone and with hADMSCs demonstrated a significant increase in mineralized tissues within 60 days post-treatment. The percentage of bone volume to total volume from microCT analyses in the rats treated with the PLGA + cells construct showed a 50% new tissue formation, which matched that of a phantom. The microCT results were supported by Von Kossa staining.

2.
ACS Omega ; 7(27): 23685-23694, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35847343

RESUMO

Chalcogenide nanoparticles have become a very active field of research for their optoelectronic and biological properties. This article shows the production of tellurium dioxide nanoparticles (TeO2 NPs) by pulsed laser ablation in liquids. The produced nanoparticles were spherical with a diameter of around 70 nm. The energy band gap of those nanoparticles was determined to be around 5.2 eV. Moreover, TeO2 NPs displayed a dose-dependent antibacterial effect against antibiotic-resistant bacteria such as multidrug-resistant Escherichia coli (MDR E. coli) and methicillin-resistant Staphylococcus aureus (MR S. aureus). The "naked" nature of the nanoparticle surface helped to eradicate the antibiotic-resistant bacteria at a very low concentration, with IC50 values of ∼4.3 ± 0.9 and 3.7 ± 0.2 ppm for MDR E. coli and MR S. aureus, respectively, after just 8 h of culture. Further, the IC50 values of the naked TeO2 NPs against melanoma (skin cancer) and healthy fibroblasts were 1.6 ± 0.7 and 5.5 ± 0.2 ppm, respectively, for up to 72 h. Finally, to understand these optimal antibacterial and anticancer properties of the TeO2 NPs, the reactive oxygen species generated by the nanoparticles were measured. In summary, the present in vitro results demonstrate much promise for the presently prepared TeO2 NPs and they should be studied for a wide range of safe antibacterial and anticancer applications.

3.
J Nanobiotechnology ; 19(1): 285, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34551771

RESUMO

BACKGROUND: In the last decade, graphene surfaces have consistently supported osteoblast development of stem cells, holding promise as a therapeutic implant for degenerative bone diseases. However, until now no study has specifically examined the genetic changes when stem cells undergo osteogenic differentiation on graphene. RESULTS: In this study, we provide a detailed overview of gene expressions when human mesenchymal stem cells (MSCs) derived from either adipose tissue (AD-MSCs) or bone marrow (BM-MSCs), are cultured on graphene. Genetic expressions were measured using osteogenic RT2 profiler PCR arrays and compared either over time (7 or 21 days) or between each cell source at each time point. Genes were categorized as either transcriptional regulation, osteoblast-related, extracellular matrix, cellular adhesion, BMP and SMAD signaling, growth factors, or angiogenic factors. Results showed that both MSC sources cultured on low oxygen graphene surfaces achieved osteogenesis by 21 days and expressed specific osteoblast markers. However, each MSC source cultured on graphene did have genetically different responses. When compared between each other, we found that genes of BM-MSCs were robustly expressed, and more noticeable after 7 days of culturing, suggesting BM-MSCs initiate osteogenesis at an earlier time point than AD-MSCs on graphene. Additionally, we found upregulated angiogenic markers in both MSCs sources, suggesting graphene could simultaneously attract the ingrowth of blood vessels in vivo. Finally, we identified several novel targets, including distal-less homeobox 5 (DLX5) and phosphate-regulating endopeptidase homolog, X-linked (PHEX). CONCLUSIONS: Overall, this study shows that graphene genetically supports differentiation of both AD-MSCs and BM-MSCs but may involve different signaling mechanisms to achieve osteogenesis. Data further demonstrates the lack of aberrant signaling due to cell-graphene interaction, strengthening the application of specific form and concentration of graphene nanoparticles in bone tissue engineering.


Assuntos
Medula Óssea , Diferenciação Celular , Grafite/metabolismo , Células-Tronco Mesenquimais , Osteogênese/fisiologia , Transdução de Sinais , Tecido Adiposo/citologia , Humanos , Células-Tronco Mesenquimais/citologia , Osteoblastos
4.
Sci Rep ; 11(1): 10254, 2021 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-33986462

RESUMO

We previously reported the development of an osteogenic bone filler scaffold consisting of degradable polyurethane, hydroxyapatite, and decellularized bovine bone particles. The current study was aimed at evaluating the use of this scaffold as a means of local antibiotic delivery to prevent infection in a bone defect contaminated with Staphylococcus aureus. We evaluated two scaffold formulations with the same component ratios but differing overall porosity and surface area. Studies with vancomycin, daptomycin, and gentamicin confirmed that antibiotic uptake was concentration dependent and that increased porosity correlated with increased uptake and prolonged antibiotic release. We also demonstrate that vancomycin can be passively loaded into either formulation in sufficient concentration to prevent infection in a rabbit model of a contaminated segmental bone defect. Moreover, even in those few cases in which complete eradication was not achieved, the number of viable bacteria in the bone was significantly reduced by treatment and there was no radiographic evidence of osteomyelitis. Radiographs and microcomputed tomography (µCT) analysis from the in vivo studies also suggested that the addition of vancomycin did not have any significant effect on the scaffold itself. These results demonstrate the potential utility of our bone regeneration scaffold for local antibiotic delivery to prevent infection in contaminated bone defects.


Assuntos
Antibacterianos/administração & dosagem , Regeneração Óssea/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , Animais , Antibacterianos/uso terapêutico , Osso e Ossos/metabolismo , Modelos Animais de Doenças , Durapatita/farmacologia , Gentamicinas/farmacologia , Osteogênese/efeitos dos fármacos , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/patogenicidade , Alicerces Teciduais/química , Vancomicina/farmacologia , Microtomografia por Raio-X/métodos
5.
J Appl Toxicol ; 41(9): 1456-1466, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33417269

RESUMO

The use of synthetic materials for biomedical applications is ever expanding. One of the major requirements for these materials is biocompatibility, which includes prevention of immune system responses. Due to the inherent complexity of their structural composition, the polyurethane (PU) family of polymers is being used in a variety of medical applications, from soft and hard tissue scaffolds to intricate coatings on implantable devices. Herein, we investigated whether two polymer materials, D3 and D7, induced an immune response, measured by their effects on a dendritic cell (DC) line, JAWS II. Using a lactate dehydrogenase cytotoxicity assay and Annexin V/PI staining, we found that the PU materials did not induce cytotoxicity in DC cells. Using confocal microscopy, we also showed that the materials did not induce activation or maturation, as compared to positive controls. This was confirmed by looking at various markers, CD80, CD86, MHC class I, and MHC class II, via flow cytometry. Overall, the results indicated that the investigated PU films are biocompatible in terms of immunotoxicology and immunogenicity and show great promise for use in regenerative medicine.


Assuntos
Materiais Biocompatíveis , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/imunologia , Teste de Materiais/métodos , Poliuretanos/farmacologia , Animais , Células da Medula Óssea/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Éteres , Camundongos , Camundongos Endogâmicos C57BL , Nanoestruturas/toxicidade , Medicina Regenerativa , Engenharia Tecidual , Alicerces Teciduais
6.
J Environ Manage ; 272: 111048, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32677621

RESUMO

Phosphate is one of the most costly and complex environmental pollutants that leads to eutrophication, which decreases water quality and access to clean water. Among different adsorbents, biochar is one of the promising adsorbents for phosphate removal as well as heavy metal removal from an aqueous solution. In this study, biochar was impregnated with nano zinc oxide in the presence of glycine betaine. The Zinc Oxide Betaine-Modified Biochar Nanocomposites (ZnOBBNC) proved to be an excellent adsorbent for the removal of phosphate, exhibiting a maximum adsorption capacity of phosphate (265.5 mg. g-1) and fast adsorption kinetics (~100% removal at 15 min at 10 mg. L-1 phosphate and 3 g. L-1 nanocomposite dosage) in phosphate solution. The synthesis of these benign ZnOBBNC involves a process that is eco-friendly and economically feasible. From material characterization, we found that the ZnOBBNC has ~20-30 nm particle size, high surface area (100.01 m2. g-1), microporous (25.79 Å) structures, and 7.64% zinc content. The influence of pH (2-10), coexisting anions (Cl-, CO32-, NO3- and SO43-), initial phosphate concentration (10-500 mg. L-1), and ZnOBBNC dosage (0.5-5 g. L-1) were investigated in batch experiments. From the adsorption isotherms data, the adsorption of phosphate using ZnOBBNC followed Langmuir isotherm (R2 = 0.9616), confirming the mono-layered adsorption mechanism. The kinetic studies showed that the phosphate adsorption using ZnOBBNC followed the pseudo-second-order model (R2 = 1.0000), confirming the chemisorption adsorption mechanism with inner-sphere complexion. Our results demonstrated ZnOBBNC as a suitable, competitive candidate for phosphate removal from both mock lab-prepared and real field-collected wastewater samples when compared to commercial nanocomposites.


Assuntos
Nanocompostos , Poluentes Químicos da Água/análise , Óxido de Zinco , Adsorção , Betaína , Carvão Vegetal , Concentração de Íons de Hidrogênio , Cinética , Fosfatos , Soluções
7.
Environ Sci Pollut Res Int ; 27(29): 36688-36703, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32564317

RESUMO

Nanocomposites containing mixed metal oxides show excellent phosphate removal results and are better compared to individual metal oxides. In this research, cerium/manganese oxide nanocomposites, embedded on the surface of modified cellulose pine wood shaving, were synthesized by a simple technique that is both eco-friendly and economically feasible. No toxic or petroleum chemicals were employed during preparation. Scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), surface area analysis, and attenuated total reflectance Fourier-transform infrared (ATR-FTIR) spectroscopy were performed to study the shape and size of nanocomposites as well as composition of elements present on the surface of the nanocomposites. Adsorption isotherm (Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich) and kinetic studies (pseudo first and second-order, Elovich and Weber-Morris) were carried out to determine the adsorption mechanism for phosphate removal from contaminated water. The maximum adsorption capacity of nanocomposites was found to be 204.09 mg/g, 174.42 mg/g, and 249.33 mg/g for 100 mg, 300 mg, and 500 mg, respectively. The results indicate that the nanocomposites were able to decrease the phosphorus concentration from 10 to 0.01 ppm, below the threshold limit required by EPA guidelines in the USA. We also demonstrated that the media could be regenerated and reused five times without loss of performance.


Assuntos
Cério , Nanocompostos , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Manganês , Compostos de Manganês , Óxidos , Fosfatos , Espectroscopia de Infravermelho com Transformada de Fourier , Águas Residuárias
8.
PLoS One ; 15(5): e0232670, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32421748

RESUMO

Complex skin wounds have always been a significant health and economic problem worldwide due to their elusive and sometimes poor or non-healing conditions. If not well-treated, such wounds may lead to amputation, infections, cancer, or even death. Thus, there is a need to efficiently generate multifunctional skin grafts that address a wide range of skin conditions, including non-healing wounds, and enable the regeneration of new skin tissue. Here, we propose studying pristine graphene and two of its oxygen-functionalized derivatives-high and low-oxygen graphene films-as potential substrates for skin cell proliferation and differentiation. Using BJ cells (human foreskin-derived fibroblasts) to represent basic skin cells, we show that the changes in surface properties of pristine graphene due to oxygen functionalization do not seem to statistically impact the normal proliferation and maturation of skin cells. Our results indicate that the pristine and oxidized graphenes presented relatively low cytotoxicity to BJ fibroblasts and, in fact, support their growth and bioactivity. Therefore, these graphene films could potentially be integrated into more complex skin regenerative systems to support skin regeneration. Because graphene's surface can be relatively easily functionalized with various chemical groups, this finding presents a major opportunity for the development of various composite materials that can act as active components in regenerative applications such as skin regeneration.


Assuntos
Fibroblastos/citologia , Grafite/química , Alicerces Teciduais/química , Linhagem Celular , Proliferação de Células , Sobrevivência Celular , Humanos , Propriedades de Superfície , Engenharia Tecidual
9.
Int J Nanomedicine ; 15: 2501-2513, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32368037

RESUMO

PURPOSE: The extracellular matrix (ECM) labyrinthine network secreted by mesenchymal stem cells (MSCs) provides a microenvironment that enhances cell adherence, proliferation, viability, and differentiation. The potential of graphene-based nanomaterials to mimic a tissue-specific ECM has been recognized in designing bone tissue engineering scaffolds. In this study, we investigated the expression of specific ECM proteins when human fat-derived adult MSCs adhered and underwent osteogenic differentiation in the presence of functionalized graphene nanoparticles. METHODS: Graphene nanoparticles with 6-10% oxygen content were prepared and characterized by XPS, FTIR, AFM and Raman spectroscopy. Calcein-am and crystal violet staining were performed to evaluate viability and proliferation of human fat-derived MSCs on graphene nanoparticles. Alizarin red staining and quantitation were used to determine the effect of graphene nanoparticles on osteogenic differentiation. Finally, immunofluorescence assays were used to investigate the expression of ECM proteins during cell adhesion and osteogenic differentiation. RESULTS: Our data show that in the presence of graphene, MSCs express specific integrin heterodimers and exhibit a distinct pattern of the corresponding bone-specific ECM proteins, primarily fibronectin, collagen I and vitronectin. Furthermore, MSCs undergo osteogenic differentiation spontaneously without any chemical induction, suggesting that the physicochemical properties of graphene nanoparticles might trigger the expression of bone-specific ECM. CONCLUSION: Understanding the cell-graphene interactions resulting in an osteogenic niche for MSCs will significantly improve the application of graphene nanoparticles in bone repair and regeneration.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Grafite/farmacologia , Células-Tronco Mesenquimais/metabolismo , Nanopartículas/química , Osteogênese/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Integrinas/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Oxigênio/química , Espectroscopia Fotoeletrônica , Multimerização Proteica
10.
Biores Open Access ; 9(1): 37-50, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117598

RESUMO

Effective graft technologies for bone repair have been a primary focus in the field of bone tissue engineering. We have previously fabricated and examined a nanocomposite composed of polyurethane, nano-hydroxyapatite, and decellularized bone particles, which demonstrated osteobiologic characteristics. To evaluate the underlying mechanisms of this biomaterial, human adipose-derived mesenchymal stem cell seeded scaffolds were assessed using a combinatorial approach of transcriptomic and metabolomic analyses. Data from osteogenic and signal transduction polymerase chain reaction arrays and small molecule abundances, measured through liquid chromatography-mass spectrometry, were cross-examined using Integrated Molecular Pathway Level Analysis, Database for Annotation, Visualization, and Integrated Discovery, and ConsensusPathDB online tools to generate a fundamental collection of scaffold-influenced pathways. Results demonstrated upregulation of key osteogenic, cellular adhesion cell signaling markers and indicated that Hedgehog and Wnt signaling pathways were primary candidates for the osteobiologic mechanisms of the scaffold design. The detection of complimentary metabolites, such as ascorbate, further indicates that scaffolds generate intricate cellular environments, promoting cell attachment and subsequent osteodifferentiation.

11.
ACS Omega ; 5(4): 1887-1901, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32039325

RESUMO

A conducting polymer of lignosulfonic acid-grafted, polyaniline-doped camphorsulfonic acid (LS-PANI-CSA), created via a low-temperature solution process, has been explored as an efficient hole-transport layer (HTL) for inverted single cation-anion CH3NH3PbI3 perovskite solar cells. The performance of the solar cell was optimized in this study by tuning the morphology and work function of LS-PANI-CSA films using dimethylsulfoxide (DMSO) as a solvent in treatment. Results showed that DMSO washing enhanced the electronic properties of the LS-PANI-CSA film and increased its hydrophobicity, which is very important for perovskite growth. The perovskite active layer deposited onto the DMSO-treated LS-PANI-CSA layer had higher crystallinity with large grain sizes (>5 µm), more uniform and complete surface coverage, and very low pinhole density and PbI2 residues compared to untreated LS-PANI-CSA. These enhancements result in higher device performance and stability. Using DMSO-treated LS-PANI-CSA as an HTL at 15 nm of thickness, a maximum 10.8% power conversion efficiency was obtained in ITO/LS-PANI-CSA/MAPbI3/PCBM/BCP/Ag inverted-device configurations. This was a significant improvement compared to 5.18% for devices based on untreated LS-PANI-CSA and a slight improvement over PEDOT:PSS-based devices with 9.48%. Furthermore, the perovskite based on treated LS-PANI-CSA showed the higher stability compared to both untreated LS-PANI-CSA and PEDOT:PSS HTL-based devices.

12.
J Appl Toxicol ; 39(7): 966-973, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30784107

RESUMO

Graphene-based nanomaterials hold the potential to be used in a wide variety of applications, including biomedical devices. Pristine graphene (PG) is an un-functionalized, defect-free type of graphene that could be used as a material for neural interfacing. However, the neurotoxic effects of PG, particularly to the blood-brain barrier (BBB), have not been fully studied. The BBB separates the brain tissue from the circulating substances in the blood and is essential to maintain the brain homeostasis. The principal components of the BBB are brain microvascular endothelial cells (BMVECs), which maintain a protectively low permeability due to the expression of tight junction proteins. Here we analyzed the effects of PG on BMVECs in an in vitro model of the BBB. BMVECs were treated with PG at 0, 10, 50 and 100 µg/mL for 24 hours and viability and functional analyses of BBB integrity were performed. PG increased lactate dehydrogenase release at 50 and 100 µg/mL, suggesting the induction of necrosis. Surprisingly, 2,3,-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)-carbonyl]-2H-tetrazolium (XTT) conversion was increased at 10 and 50 µg/mL. In contrast, XTT conversion was decreased at 100 µg/mL, suggesting the induction of cell death. In addition, 100 µg/mL PG increased DNA fragmentation, suggesting induction of apoptosis. At the same time, 50 and 100 µg/mL of PG increased the endothelial permeability, which corresponded with a decrease in the expression of the tight junction protein occludin at 100 µg/mL. In conclusion, these results suggest that PG negatively affects the viability and function of the BBB endothelial cells in vitro.


Assuntos
Apoptose/efeitos dos fármacos , Barreira Hematoencefálica/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Grafite/toxicidade , Microvasos/efeitos dos fármacos , Animais , Apoptose/genética , Barreira Hematoencefálica/enzimologia , Barreira Hematoencefálica/patologia , Encéfalo/irrigação sanguínea , Permeabilidade Capilar/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Fragmentação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Grafite/farmacocinética , L-Lactato Desidrogenase/metabolismo , Microvasos/enzimologia , Microvasos/patologia , Ratos
13.
Nanoscale ; 11(3): 932-944, 2019 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-30608496

RESUMO

The use of graphene for biomedical and other applications involving humans is growing and shows practical promise. However, quantifying the graphitic nanomaterials that interact with cells and assessing any corresponding cellular response is extremely challenging. Here, we report an effective approach to quantify graphene interacting with single cells that utilizes combined multimodal-Raman and photoacoustic spectroscopy. This approach correlates the spectroscopic signature of graphene with the measurement of its mass using a quartz crystal microbalance resonator. Using this technique, we demonstrate single cell noninvasive quantification and multidimensional mapping of graphene with a detection limit of as low as 200 femtograms. Our investigation also revealed previously unseen graphene-induced changes in surface receptor expression in dendritic cells of the immune system. This tool integrates high-sensitivity real-time detection and monitoring of nanoscale materials inside single cells with the measurement of induced simultaneous biological cell responses, providing a powerful method to study the impact of nanomaterials on living systems and as a result, the toxicology of nanoscale materials.


Assuntos
Grafite/química , Nanoestruturas/química , Receptores de Superfície Celular/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Técnicas Fotoacústicas , Técnicas de Microbalança de Cristal de Quartzo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Análise Espectral Raman
14.
ACS Appl Bio Mater ; 2(5): 1815-1829, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35030672

RESUMO

The complex dynamic nature of bone tissue presents a unique challenge for developing optimal biomaterials within the field of bone tissue engineering. Materials based on biological and physiological characteristics of natural bone have shown promise for inducing and promoting effective bone repair. Design of multicomposite scaffolds that incorporate both malleable and hard mineral components allows for intricate structures with nano- and macrosized mineral components to provide architectural elements that promote osteogenesis. The examined S-1 and S-2 scaffolds are multilayered constructs which differ only in the compositional ratio of nanohydroxyapatite (nHA) and decellularized bone particles (DBPs). The constructs incorporated previously studied nHA/polyurethane films interspersed with macrosized bone DBPs to stimulate integration with native tissue and induce osteogenic activity. In vitro assessment of cytocompatibility and osteostimulatory characteristics indicated that the scaffolds did not negatively impact cell health and demonstrated osteogenic effects. When the constructs were implanted in vivo, in a rat tibial defect model, the biocompatibility and osteogenic impact were confirmed. Material-treated defects were observed to not induce negative tissue reactions and, in those treated with S-1 scaffolds, exhibited greater levels of new bone formation. These results indicate that, while both scaffold designs were biocompatible, S-1 constructs demonstrate more effective biologically relevant nano-/macromineral architectural elements.

15.
J Biomater Sci Polym Ed ; 29(12): 1426-1443, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29649935

RESUMO

A wide variety of biomaterials are utilized in tissue engineering to promote cell proliferations in vitro or tissue growth in vivo. The combination of cells, extracellular matrices, and biocompatible materials may make it possible to grow functional living tissues ranging from bone to nerve cells. In bone regeneration, polymeric scaffolds can be enhanced by the addition of bioactive materials. To this end, this study designed several ratios of polyurethane (PU) and nano-hydroxyapatite (nHA) composites (PU-nHA ratios: 100/0, 90/10, 80/20, 70/30, 60/40 w/w). The physical and mechanical properties of these composites and their relative cellular compatibility in vitro were determined. The chemical composition and crystallinity of the composites were confirmed using X-ray diffraction, X-ray photoelectron spectroscopy, and thermogravimetric analyses. Atomic force microscopy, nano-indentation, and contact angle measurements were used to evaluate surface properties. The results showed a significant increase in surface roughness and a decrease in contact angle when the nHA concentration increased above 20%, resulting in a significant increase in hydrophilicity. These surface property changes influenced cellular behavior when MC 3T3-E1 cells were seeded on the composites. All composites were cytocompatible. There was a linear increase in cell proliferation on the 80/20 and 70/30 composites only, whereas subjective evaluation demonstrated noticeable clusters or nodules of cells (considered hallmarks of osteogenic differentiation) in the absence of any osteogenic inducers only on the 90/10 and 80/20 composites. Cellular data suggests that the 80/20 composite was an optimal environment for cell adhesion, proliferation, and, potentially, osteogenic differentiation in vitro.


Assuntos
Materiais Biocompatíveis/química , Durapatita/química , Nanocompostos/química , Osteogênese , Poliuretanos/química , Fenômenos Biomecânicos , Regeneração Óssea , Adesão Celular , Linhagem Celular , Proliferação de Células , Células Cultivadas , Humanos , Membranas Artificiais , Propriedades de Superfície , Engenharia Tecidual/métodos , Alicerces Teciduais/química
16.
Sci Rep ; 7(1): 16654, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192282

RESUMO

A 2D multifunctional nanocomposite system of gold nanorods (AuNRs) was developed. Gold nanorods were functionalized via polyethylene glycol with a terminal amine, and, were characterized using transmission and scanning electron microscopy, ultra violet-visible and X-ray photoelectron spectroscopy, and Zeta-potential. The system was cytocompatible to and maintained the integrity of Schwann cells. The neurogenic potential of adipose tissue - derived human mesenchymal stem cells (hMSCs) was evaluated in vitro. The expression pattern and localization of Vimentin confirmed the mesenchymal origin of cells and tracked morphological changes during differentiation. The expression patterns of S100ß and glial fibrillary acidic protein (GFAP), were used as indicator for neural differentiation. Results suggested that this process was enhanced when the cells were seeded on the AuNRs compared to the tissue-culture surface. The present study indicates that the design and the surface properties of the AuNRs enhances neural differentiation of hMSCs and hence, would be beneficial for neural tissue engineering scaffolds.


Assuntos
Diferenciação Celular , Ouro , Células-Tronco Mesenquimais/citologia , Nanocompostos , Nanotubos , Células-Tronco Neurais/citologia , Linhagem Celular , Células Cultivadas , Ouro/química , Humanos , Células-Tronco Mesenquimais/metabolismo , Mitocôndrias/metabolismo , Nanocompostos/química , Nanocompostos/ultraestrutura , Nanotubos/química , Nanotubos/ultraestrutura , Células-Tronco Neurais/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Células de Schwann/citologia , Células de Schwann/metabolismo
17.
J Appl Toxicol ; 37(11): 1288-1296, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28677847

RESUMO

Graphene-based nanomaterials have received significant attention in the last decade due to their interesting properties. Its electrical and thermal conductivity and strength make graphene well suited for a variety of applications, particularly for use as a composite material in plastics. Furthermore, much work is taking place to utilize graphene as a biomaterial for uses such as drug delivery and tissue regeneration scaffolds. Owing to the rapid progress of graphene and its potential in many marketplaces, the potential toxicity of these materials has garnered attention. Graphene, while simple in its purest form, can have many different chemical and physical properties. In this paper, we describe our toxicity evaluation of pristine graphene and a functionalized graphene sample that has been oxidized for enhanced hydrophilicity, which was synthesized from the pristine sample. The samples were characterized by X-ray photoelectron spectroscopy, Raman spectroscopy, infrared spectroscopy, thermogravimetric analysis, zeta-potential, atomic force microscopy and electron microscopy. We discuss the disagreement between the size of imaged samples analyzed by atomic force microscopy and by transmission electron microscopy. Furthermore, the samples each exhibit quite different surface chemistry and structure, which directly affects their interaction with aqueous environments and is important to consider when evaluating the toxicity of materials both in vitro and in vivo. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Fulerenos/toxicidade , Grafite/toxicidade , Nanopartículas/toxicidade , Animais , Fulerenos/química , Grafite/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Nanopartículas/química , Oxirredução , Tamanho da Partícula , Espectroscopia Fotoeletrônica , Medição de Risco , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Relação Estrutura-Atividade , Propriedades de Superfície , Termogravimetria , Testes de Toxicidade
18.
Nanomedicine ; 13(7): 2117-2126, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28579435

RESUMO

The potential of graphene-based nanoparticles (GNPs) has recently gained significant attention in biomedicine, especially in tissue engineering. In this study, we investigated the osteoinductive and osteoconductive effects of low oxygen content graphene (LOG) nanoparticles on adult mesenchymal stem cells (MSCs) in vitro and in vivo. We showed that adult goat MSCs were viable in the presence of 0.1 mg/mL LOG and retained their stem cell properties. A 3D scaffold made from agarose was used to encapsulate MSCs and LOG nanoparticles. Scanning electron microscopy demonstrated the cell morphology and adherence of MSCs to LOG in the 3D form. The LOG and MSCs in the 3D scaffold were xenogenically implanted into a rat unicortical tibial bone defect. The combination of MSCs and LOG nanoparticles resulted in improved active bone formation and increased mineralization. These results strengthen the applicability of LOG nanoparticles as an adjunct treatment for bone tissue engineering.


Assuntos
Regeneração Óssea , Grafite/química , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Nanopartículas/química , Alicerces Teciduais/química , Animais , Células Cultivadas , Cabras , Transplante de Células-Tronco Mesenquimais/métodos , Osteogênese , Ratos Sprague-Dawley
19.
J Appl Toxicol ; 37(11): 1297-1304, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28524252

RESUMO

Graphene-based nanomaterials (GBNs) are quickly revolutionizing modern electronics, energy generation and storage, clothing and biomedical devices. Due to GBN's variety of physical and chemical parameters that define their toxicity and their aggregation in suspension, interpreting its toxicology without accurate information on graphene's distribution and behavior in live organisms is challenging. In this work, we present a laser-based optical detection methodology for noninvasive detection and pharmacokinetics analysis of GBNs directly in blood flow in mice using in vivo photoacoustic (PA) flow cytometry (PAFC). PAFC provides unique insight on how chemical modifications of GBNs affect their distribution in blood circulation and how quickly they are eliminated from the flow. Overall, PAFC provided unique data crucial for understanding GBN toxicity through real-time detection of GBNs using their intrinsic light absorption contrast. Copyright © 2017 John Wiley & Sons, Ltd.


Assuntos
Citometria de Fluxo/métodos , Grafite/farmacocinética , Nanopartículas , Técnicas Fotoacústicas , Animais , Feminino , Grafite/administração & dosagem , Grafite/sangue , Grafite/química , Interações Hidrofóbicas e Hidrofílicas , Injeções Intravenosas , Camundongos Nus , Reprodutibilidade dos Testes
20.
J Appl Toxicol ; 37(11): 1333-1345, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28425621

RESUMO

Due to the distinctive physical, electrical, and chemical properties of graphene nanomaterials, numerous efforts pursuing graphene-based biomedical and industrial applications are underway. Oxidation of pristine graphene surfaces mitigates its otherwise hydrophobic characteristic thereby improving its biocompatibility and functionality. Yet, the potential widespread use of oxidized graphene derivatives raises concern about adverse impacts on human health. The p53 tumor suppressor protein maintains cellular and genetic stability after toxic exposures. Here, we show that p53 functional status correlates with oxygen functionalized graphene (f-G) cytotoxicity and genotoxicity in vitro. The f-G exposed p53-competent cells, but not p53-deficient cells, initiated G0 /G1 phase cell cycle arrest, suppressed reactive oxygen species, and entered apoptosis. There was p53-dependent f-G genotoxicity evident as increased structural chromosome damage, but not increased gene mutation or chromatin loss. In conclusion, the cytotoxic and genotoxic potential for f-G in exposed cells was dependent on the p53 functional status. These findings have broad implications for the safe and effective implementation of oxidized graphene derivatives into biomedical and industrial applications. Published 2017. This article has been contributed to by US Government employees and their work is in the public domain in the USA.


Assuntos
Linfócitos B/efeitos dos fármacos , Grafite/toxicidade , Nanopartículas/toxicidade , Proteína Supressora de Tumor p53/metabolismo , Apoptose/efeitos dos fármacos , Linfócitos B/metabolismo , Linfócitos B/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Transformada , Aberrações Cromossômicas/induzido quimicamente , Relação Dose-Resposta a Droga , Grafite/química , Humanos , Perda de Heterozigosidade , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Medição de Risco , Fatores de Tempo , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...