Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1283093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148867

RESUMO

Scots pine (Pinus sylvestris L.) is an evergreen coniferous tree with wide distribution and good growth performance in a range of habitats. Therefore, wood from P. sylvestris is produced in many managed forests and is frequently used in industry. Despite the importance of pine wood, we still do not fully understand its molecular structure what limits improvements in its processing. One of the basic features leading to variation in wood properties is the presence of earlywood and latewood which form annual growth rings. Here, we characterise biochemical traits that differentiate cell walls of earlywood and latewood in Scots pine. We discover that latewood is less recalcitrant to enzymatic digestion, with galactoglucomannan showing particularly pronounced difference in accessibility. Interestingly, characterisation of lignin reveals a higher proportion of coniferaldehydes in pine latewood and suggests the presence of a different linkage landscape in this wood type. With complementary analysis of wood polysaccharides this enabled us to propose the first detailed molecular model of earlywood and latewood and to conclude that the variation in lignin structure is likely the main determinant of differences in recalcitrance observed between the two wood types in pine. Our discoveries lay the foundation for improvements in industrial processes that use pine wood since we show clear pathways for increasing the efficiency of enzymatic processing of this renewable material. Our work will help guide future breeding of pine trees with desired timber properties and can help link molecular structure of softwood cell walls to function of the different types of xylem in conifers.

2.
Proc Natl Acad Sci U S A ; 120(41): e2302985120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37782806

RESUMO

Plant morphogenesis is governed by the mechanics of the cell wall-a stiff and thin polymeric box that encloses the cells. The cell wall is a highly dynamic composite material. New cell walls are added during cell division. As the cells continue to grow, the properties of cell walls are modulated to undergo significant changes in shape and size without breakage. Spatial and temporal variations in cell wall mechanical properties have been observed. However, how they relate to cell division remains an outstanding question. Here, we combine time-lapse imaging with local mechanical measurements via atomic force microscopy to systematically map the cell wall's age and growth, with their stiffness. We make use of two systems, Marchantia polymorpha gemmae, and Arabidopsis thaliana leaves. We first characterize the growth and cell division of M. polymorpha gemmae. We then demonstrate that cell division in M. polymorpha gemmae results in the generation of a temporary stiffer and slower-growing new wall. In contrast, this transient phenomenon is absent in A. thaliana leaves. We provide evidence that this different temporal behavior has a direct impact on the local cell geometry via changes in the junction angle. These results are expected to pave the way for developing more realistic plant morphogenetic models and to advance the study into the impact of cell division on tissue growth.


Assuntos
Arabidopsis , Marchantia , Arabidopsis/genética , Marchantia/genética , Folhas de Planta , Parede Celular , Polímeros
3.
Nat Plants ; 9(9): 1530-1546, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37666966

RESUMO

Plant biomass plays an increasingly important role in the circular bioeconomy, replacing non-renewable fossil resources. Genetic engineering of this lignocellulosic biomass could benefit biorefinery transformation chains by lowering economic and technological barriers to industrial processing. However, previous efforts have mostly targeted the major constituents of woody biomass: cellulose, hemicellulose and lignin. Here we report the engineering of wood structure through the introduction of callose, a polysaccharide novel to most secondary cell walls. Our multiscale analysis of genetically engineered poplar trees shows that callose deposition modulates cell wall porosity, water and lignin contents and increases the lignin-cellulose distance, ultimately resulting in substantially decreased biomass recalcitrance. We provide a model of the wood cell wall nano-architecture engineered to accommodate the hydrated callose inclusions. Ectopic polymer introduction into biomass manifests in new physico-chemical properties and offers new avenues when considering lignocellulose engineering.


Assuntos
Lignina , Madeira , Biomassa , Celulose
4.
Curr Biol ; 33(5): 926-939.e9, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36805125

RESUMO

In plants, the phloem distributes photosynthetic products for metabolism and storage over long distances. It relies on specialized cells, the sieve elements, which are enucleated and interconnected through large so-called sieve pores in their adjoining cell walls. Reverse genetics identified PECTATE LYASE-LIKE 12 (PLL12) as critical for plant growth and development. Using genetic complementations, we established that PLL12 is required exclusively late during sieve element differentiation. Structural homology modeling, enzyme inactivation, and overexpression suggest a vital role for PLL12 in sieve-element-specific pectin remodeling. While short distance symplastic diffusion is unaffected, the pll12 mutant is unable to accommodate sustained plant development due to an incapacity to accommodate increasing hydraulic demands on phloem long-distance transport as the plant grows-a defect that is aggravated when combined with another sieve-element-specific mutant callose synthase 7 (cals7). Establishing CALS7 as a specific sieve pore marker, we investigated the subcellular dynamics of callose deposition in the developing sieve plate. Using fluorescent CALS7 then allowed identifying structural defects in pll12 sieve pores that are moderate at the cellular level but become physiologically relevant due to the serial arrangement of sieve elements in the sieve tube. Overall, pectin degradation through PLL12 appears subtle in quantitative terms. We therefore speculate that PLL12 may act as a regulator to locally remove homogalacturonan, thus potentially enabling further extracellular enzymes to access and modify the cell wall during sieve pore maturation.


Assuntos
Arabidopsis , Arabidopsis/metabolismo , Floema/metabolismo , Glucanos/metabolismo , Plantas/metabolismo
5.
Plant J ; 113(5): 1004-1020, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36602010

RESUMO

Xylan is the most abundant non-cellulosic polysaccharide in grass cell walls, and it has important structural roles. The name glucuronoarabinoxylan (GAX) is used to describe this variable hemicellulose. It has a linear backbone of ß-1,4-xylose (Xyl) residues that may be substituted with α-1,2-linked (4-O-methyl)-glucuronic acid (GlcA), α-1,3-linked arabinofuranose (Araf), and sometimes acetylation at the O-2 and/or O-3 positions. The role of these substitutions remains unclear, although there is increasing evidence that they affect the way xylan interacts with other cell wall components, particularly cellulose and lignin. Here, we used substitution-dependent endo-xylanase enzymes to investigate the variability of xylan substitution in grass culm cell walls. We show that there are at least three different types of xylan: (i) an arabinoxylan with evenly distributed Araf substitutions without GlcA (AXe); (ii) a glucuronoarabinoxylan with clustered GlcA modifications (GAXc); and (iii) a highly substituted glucuronoarabinoxylan (hsGAX). Immunolocalization of AXe and GAXc in Brachypodium distachyon culms revealed that these xylan types are not restricted to a few cell types but are instead widely detected in Brachypodium cell walls. We hypothesize that there are functionally specialized xylan types within the grass cell wall. The even substitutions of AXe may permit folding and binding on the surface of cellulose fibrils, whereas the more complex substitutions of the other xylans may support a role in the matrix and interaction with other cell wall components.


Assuntos
Celulose , Xilanos , Xilanos/metabolismo , Celulose/metabolismo , Lignina/metabolismo , Ácido Glucurônico/metabolismo , Xilose/metabolismo , Parede Celular/metabolismo
6.
Nat Plants ; 8(8): 954-970, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35927456

RESUMO

Single-cell sequencing has recently allowed the generation of exhaustive root cell atlases. However, some cell types are elusive and remain underrepresented. Here we use a second-generation single-cell approach, where we zoom in on the root transcriptome sorting with specific markers to profile the phloem poles at an unprecedented resolution. Our data highlight the similarities among the developmental trajectories and gene regulatory networks common to protophloem sieve element (PSE)-adjacent lineages in relation to PSE enucleation, a key event in phloem biology. As a signature for early PSE-adjacent lineages, we have identified a set of DNA-binding with one finger (DOF) transcription factors, the PINEAPPLEs (PAPL), that act downstream of PHLOEM EARLY DOF (PEAR) genes and are important to guarantee a proper root nutrition in the transition to autotrophy. Our data provide a holistic view of the phloem poles that act as a functional unit in root development.


Assuntos
Arabidopsis , Floema , Arabidopsis/genética , Diferenciação Celular , Redes Reguladoras de Genes , Floema/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Plants (Basel) ; 11(11)2022 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-35684270

RESUMO

Resilience of growing in arid and semiarid regions and a high capacity of accumulating sugar-rich biomass with low lignin percentages have placed Agave species as an emerging bioenergy crop. Although transcriptome sequencing of fiber-producing agave species has been explored, molecular bases that control wall cell biogenesis and metabolism in agave species are still poorly understood. Here, through RNAseq data mining, we reconstructed the cellulose biosynthesis pathway and the phenylpropanoid route producing lignin monomers in A. tequilana, and evaluated their expression patterns in silico and experimentally. Most of the orthologs retrieved showed differential expression levels when they were analyzed in different tissues with contrasting cellulose and lignin accumulation. Phylogenetic and structural motif analyses of putative CESA and CAD proteins allowed to identify those potentially involved with secondary cell wall formation. RT-qPCR assays revealed enhanced expression levels of AtqCAD5 and AtqCESA7 in parenchyma cells associated with extraxylary fibers, suggesting a mechanism of formation of sclerenchyma fibers in Agave similar to that reported for xylem cells in model eudicots. Overall, our results provide a framework for understanding molecular bases underlying cell wall biogenesis in Agave species studying mechanisms involving in leaf fiber development in monocots.

8.
BMC Plant Biol ; 21(1): 258, 2021 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-34134628

RESUMO

BACKGROUND: Dionysia tapetodes, a small cushion-forming mountainous evergreen in the Primulaceae, possesses a vast surface-covering of long silky fibres forming the characteristic "woolly" farina. This contrasts with some related Primula which instead form a fine powder. Farina is formed by specialized cellular factories, a type of glandular trichome, but the precise composition of the fibres and how it exits the cell is poorly understood. Here, using a combination of cell biology (electron and light microscopy) and analytical chemical techniques, we present the principal chemical components of the wool and its mechanism of exit from the glandular trichome. RESULTS: We show the woolly farina consists of micron-diameter fibres formed from a mixture of flavone and substituted flavone derivatives. This contrasts with the powdery farina, consisting almost entirely of flavone. The woolly farina in D. tapetodes is extruded through specific sites at the surface of the trichome's glandular head cell, characterised by a small complete gap in the plasma membrane, cell wall and cuticle and forming a tight seal between the fibre and hole. The data is consistent with formation and thread elongation occurring from within the cell. CONCLUSIONS: Our results suggest the composition of the D. tapetodes farina dictates its formation as wool rather than powder, consistent with a model of thread integrity relying on intermolecular H-bonding. Glandular trichomes produce multiple wool fibres by concentrating and maintaining their extrusion at specific sites at the cell cortex of the head cell. As the wool is extensive across the plant, there may be associated selection pressures attributed to living at high altitudes.


Assuntos
Flavonas/análise , Primulaceae/ultraestrutura , Tricomas/ultraestrutura , Microscopia , Microscopia Eletrônica , Primulaceae/química
9.
Plants (Basel) ; 9(12)2020 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-33255527

RESUMO

Spines are key plant modifications developed to deal against herbivores; however, its physical structure and chemical composition have been little explored in plant species. Here, we took advantage of high-throughput chromatography to characterize chemical composition of Agave fourcroydes Lem. spines, a species traditionally used for fiber extraction. Analyses of structural carbohydrate showed that spines have lower cellulose content than leaf fibers (52 and 72%, respectively) but contain more than 2-fold the hemicellulose and 1.5-fold pectin. Xylose and galacturonic acid were enriched in spines compared to fibers. The total lignin content in spines was 1.5-fold higher than those found in fibers, with elevated levels of syringyl (S) and guaiacyl (G) subunits but similar S/G ratios within tissues. Metabolomic profiling based on accurate mass spectrometry revealed the presence of phenolic compounds including quercetin, kaempferol, (+)-catechin, and (-)-epicatechin in A. fourcroydes spines, which were also detected in situ in spines tissues and could be implicated in the color of these plants' structures. Abundance of (+)-catechins could also explain proanthocyanidins found in spines. Agave spines may become a plant model to obtain more insights about cellulose and lignin interactions and condensed tannin deposition, which is valuable knowledge for the bioenergy industry and development of naturally dyed fibers, respectively.

10.
Curr Biol ; 30(4): 589-599.e5, 2020 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-32004453

RESUMO

Tree architecture has evolved to support a top-heavy above-ground biomass, but this integral feature poses a weight-induced challenge to trunk stability. Maintaining an upright stem is expected to require vertical proprioception through feedback between sensing stem weight and responding with radial growth. Despite its apparent importance, the principle by which plant stems respond to vertical loading forces remains largely unknown. Here, by manipulating the stem weight of downy birch (Betula pubescens) trees, we show that cambial development is modulated systemically along the stem. We carried out a genetic study on the underlying regulation by combining an accelerated birch flowering program with a recessive mutation at the ELIMÄKI locus (EKI), which causes a mechanically defective response to weight stimulus resulting in stem collapse after just 3 months. We observed delayed wood morphogenesis in eki compared with WT, along with a more mechanically elastic cambial zone and radial compression of xylem cell size, indicating that rapid tissue differentiation is critical for cambial growth under mechanical stress. Furthermore, the touch-induced mechanosensory pathway was transcriptionally misregulated in eki, indicating that the ELIMÄKI locus is required to integrate the weight-growth feedback regulation. By studying this birch mutant, we were able to dissect vertical proprioception from the gravitropic response associated with reaction wood formation. Our study provides evidence for both local and systemic responses to mechanical stimuli during secondary plant development.


Assuntos
Betula/genética , Câmbio/crescimento & desenvolvimento , Genes de Plantas , Caules de Planta/crescimento & desenvolvimento , Betula/crescimento & desenvolvimento , Câmbio/genética , Mutação , Caules de Planta/genética , Propriocepção/genética , Árvores/genética , Árvores/crescimento & desenvolvimento
11.
Front Plant Sci ; 10: 1398, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31708959

RESUMO

The woody secondary cell walls of plants are the largest repository of renewable carbon biopolymers on the planet. These walls are made principally from cellulose and hemicelluloses and are impregnated with lignin. Despite their importance as the main load bearing structure for plant growth, as well as their industrial importance as both a material and energy source, the precise arrangement of these constituents within the cell wall is not yet fully understood. We have adapted low temperature scanning electron microscopy (cryo-SEM) for imaging the nanoscale architecture of angiosperm and gymnosperm cell walls in their native hydrated state. Our work confirms that cell wall macrofibrils, cylindrical structures with a diameter exceeding 10 nm, are a common feature of the native hardwood and softwood samples. We have observed these same structures in Arabidopsis thaliana secondary cell walls, enabling macrofibrils to be compared between mutant lines that are perturbed in cellulose, hemicellulose, and lignin formation. Our analysis indicates that the macrofibrils in Arabidopsis cell walls are dependent upon the proper biosynthesis, or composed, of cellulose, xylan, and lignin. This study establishes that cryo-SEM is a useful additional approach for investigating the native nanoscale architecture and composition of hardwood and softwood secondary cell walls and demonstrates the applicability of Arabidopsis genetic resources to relate fibril structure with wall composition and biosynthesis.

12.
Nat Commun ; 9(1): 4538, 2018 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-30382102

RESUMO

The properties of (1,3)-ß-glucans (i.e., callose) remain largely unknown despite their importance in plant development and defence. Here we use mixtures of (1,3)-ß-glucan and cellulose, in ionic liquid solution and hydrogels, as proxies to understand the physico-mechanical properties of callose. We show that after callose addition the stiffness of cellulose hydrogels is reduced at a greater extent than predicted from the ideal mixing rule (i.e., the weighted average of the individual components' properties). In contrast, yield behaviour after the elastic limit is more ductile in cellulose-callose hydrogels compared with sudden failure in 100% cellulose hydrogels. The viscoelastic behaviour and the diffusion of the ions in mixed ionic liquid solutions strongly indicate interactions between the polymers. Fourier-transform infrared analysis suggests that these interactions impact cellulose organisation in hydrogels and cell walls. We conclude that polymer interactions alter the properties of callose-cellulose mixtures beyond what it is expected by ideal mixing.


Assuntos
Celulose/metabolismo , Glucanos/metabolismo , Arabidopsis/metabolismo , Celulose/química , Elasticidade , Estradiol/farmacologia , Glucanos/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Ligação de Hidrogênio , Líquidos Iônicos , Nanopartículas/química , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura , Viscosidade
13.
Curr Biol ; 27(17): R842-R844, 2017 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898646

RESUMO

To introduce pits into a cell wall, plants depolymerize cortical microtubules, which prevents subsequent secondary cell wall thickening. A newly identified protein tethers microtubules to the plasma membrane and contains this breakdown to defined regions, thereby shaping these holes.


Assuntos
Parede Celular , Xilema , Membrana Celular , Microtúbulos , Proteínas rho de Ligação ao GTP
14.
Elife ; 62017 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-28230527

RESUMO

In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through plasmodesmata by a combination of mass flow and diffusion (convective phloem unloading). During unloading, solutes and proteins are diverted into the phloem-pole pericycle, a tissue connected to the protophloem by a unique class of 'funnel plasmodesmata'. While solutes are unloaded without restriction, large proteins are released through funnel plasmodesmata in discrete pulses, a phenomenon we refer to as 'batch unloading'. Unlike solutes, these proteins remain restricted to the phloem-pole pericycle. Our data demonstrate a major role for the phloem-pole pericycle in regulating phloem unloading in roots.


Assuntos
Arabidopsis/metabolismo , Floema/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Modelos Teóricos , Imagem Óptica , Plasmodesmos/metabolismo
15.
Cytometry A ; 85(2): 115-25, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24273206

RESUMO

Fleshy fruit species such as tomato are important because of their nutritional and economic value. Several stages of fruit development such as ovary formation, fruit set, and fruit maturation have already been the subject of many developmental studies. However, fruit growth per se has been much less addressed. Fruit growth like all plant organs depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will compose the fruit; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by the means of endoreduplication, i.e. genome amplification in the absence of mitosis, appears to be of great importance in fleshy fruits. In tomato fruit, endoreduplication is associated with DNA-dependent cell expansion: cell size can reach spectacular levels such as hundreds of times its initial size (e.g. >0.5 mm in diameter), with as much as a 256-fold increase in nuclear DNA content. Using tomato fruit development as a model, recent investigations combining the use of flow cytometry, cellular imaging and molecular analyses have provided new data in favor of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication acts as a morphogenetic factor supporting cell growth during tomato fruit development. In the context of plant breeding, deciphering the mechanisms controlling fruit growth, in particular those connecting the process of nuclear endoreduplication with modulation of gene expression, the regulation of cell size and final fruit size and composition, is necessary to understand better the establishment of fleshy fruit quality traits.


Assuntos
Núcleo Celular/genética , Endorreduplicação , Frutas/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Solanum lycopersicum/genética , Divisão Celular , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Tamanho Celular , Cromatina/metabolismo , Citoplasma/metabolismo , Citoplasma/ultraestrutura , Biologia do Desenvolvimento , Citometria de Fluxo , Frutas/metabolismo , Frutas/ultraestrutura , Regulação da Expressão Gênica no Desenvolvimento , Solanum lycopersicum/citologia , Solanum lycopersicum/metabolismo , Proteínas de Plantas/metabolismo , Poliploidia
16.
J Exp Bot ; 65(10): 2731-46, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24187421

RESUMO

The growth of a plant organ depends upon the developmental processes of cell division and cell expansion. The activity of cell divisions sets the number of cells that will make up the organ; the cell expansion activity then determines its final size. Among the various mechanisms that may influence the determination of cell size, endopolyploidy by means of endoreduplication appears to be of great importance in plants. Endoreduplication is widespread in plants and supports the process of differentiation of cells and organs. Its functional role in plant cells is not fully understood, although it is commonly associated with ploidy-dependent cell expansion. During the development of tomato fruit, cells from the (fleshy) pericarp tissue become highly polyploid, reaching a DNA content barely encountered in other plant species (between 2C and 512C). Recent investigations using tomato fruit development as a model provided new data in favour of the long-standing karyoplasmic ratio theory, stating that cells tend to adjust their cytoplasmic volume to the nuclear DNA content. By establishing a highly structured cellular system where multiple physiological functions are integrated, endoreduplication does act as a morphogenetic factor supporting cell growth during tomato fruit development.


Assuntos
Endorreduplicação , Solanum lycopersicum/crescimento & desenvolvimento , Divisão Celular , Tamanho Celular , Solanum lycopersicum/citologia
17.
Development ; 139(20): 3817-26, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22991446

RESUMO

Endopolyploidy is a widespread process that corresponds to the amplification of the genome in the absence of mitosis. In tomato, very high ploidy levels (up to 256C) are reached during fruit development, concomitant with very large cell sizes. Using cellular approaches (fluorescence and electron microscopy) we provide a structural analysis of endoreduplicated nuclei at the level of chromatin and nucleolar organisation, nuclear shape and relationship with other cellular organelles such as mitochondria. We demonstrate that endopolyploidy in pericarp leads to the formation of polytene chromosomes and markedly affects nuclear structure. Nuclei manifest a complex shape, with numerous deep grooves that are filled with mitochondria, affording a fairly constant ratio between nuclear surface and nuclear volume. We provide the first direct evidence that endopolyploidy plays a role in increased transcription of rRNA and mRNA on a per-nucleus basis. Overall, our results provide quantitative evidence in favour of the karyoplasmic theory and show that endoreduplication is associated with complex cellular organisation during tomato fruit development.


Assuntos
Núcleo Celular/ultraestrutura , Endorreduplicação , Poliploidia , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Transcrição Gênica , Núcleo Celular/genética , Tamanho Celular , Cromatina/ultraestrutura , Frutas/crescimento & desenvolvimento , Amplificação de Genes , Homeostase , Hibridização in Situ Fluorescente , Solanum lycopersicum/ultraestrutura , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Mitose , Região Organizadora do Nucléolo/ultraestrutura , Cromossomos Politênicos/genética , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Ribossômico/biossíntese , Ativação Transcricional
18.
Plant J ; 66(6): 1089-99, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21418357

RESUMO

Endopolyploidy, i.e. amplification of the genome in the absence of mitosis, occurs in many plant species and happens along with organ and cell differentiation. Deciphering the functional roles of endopolyploidy is hampered by the fact that polyploid tissues generally comprise cells with various ploidy levels. In some fleshy fruits (amongst them tomato fruit) the ploidy levels present at the end of development range from 2C to 256C in the same tissue. To investigate the temporal and spatial distribution of endopolyploidy it is necessary to address the DNA content of individual nuclei in situ. Conventional methods such as fluorometry or densitometry can be used for some tissues displaying favorable characteristics, e.g. small cells, small nuclei, organization in a monolayer, but high levels of varying polyploidy are usually associated with large sizes of nuclei and cells, in a complex three dimensional (3-D) organization of the tissues. The conventional methods are inadequate for such tissue, becoming semi-quantitative and imprecise. We report here the development of a new method based on fluorescent in situ bacterial artificial chromosome hybridizations that allows the in situ determination of the DNA ploidy level of individual nuclei. This method relies on the counting of hybridization signals and not on intensity measurements and is expected to provide an alternative method for mapping endopolyploidy patterns in mature, 3-D organized plant tissues as illustrated by the analysis of ploidy level and cell size in pericarp from mature green tomato fruit.


Assuntos
Núcleo Celular/genética , Frutas/genética , Hibridização in Situ Fluorescente/métodos , Ploidias , Solanum lycopersicum/genética , Divisão Celular , Crescimento Celular , Tamanho Celular , Cromossomos Artificiais Bacterianos , Frutas/citologia , Frutas/crescimento & desenvolvimento , Solanum lycopersicum/citologia , Solanum lycopersicum/crescimento & desenvolvimento , Plastídeos/genética
19.
Ann Bot ; 107(7): 1159-69, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21199834

RESUMO

BACKGROUND: Endoreduplication is the major source of endopolyploidy in higher plants. The process of endoreduplication results from the ability of cells to modify their classical cell cycle into a partial cell cycle where DNA synthesis occurs independently from mitosis. Despite the ubiquitous occurrence of the phenomenon in eukaryotic cells, the physiological meaning of endoreduplication remains vague, although several roles during plant development have been proposed, mostly related to cell differentiation and cell size determination. SCOPE: Here recent advances in the knowledge of endoreduplication and fruit organogenesis are reviewed, focusing on tomato (Solanum lycopersicum) as a model, and the functional analyses of endoreduplication-associated regulatory genes in tomato fruit are described. CONCLUSIONS: The cyclin-dependent kinase inhibitory kinase WEE1 and the anaphase promoting complex activator CCS52A both participate in the control of cell size and the endoreduplication process driving cell expansion during early fruit development in tomato. Moreover the fruit-specific functional analysis of the tomato CDK inhibitor KRP1 reveals that cell size and fruit size determination can be uncoupled from DNA ploidy levels, indicating that endoreduplication acts rather as a limiting factor for cell growth. The overall functional data contribute to unravelling the physiological role of endoreduplication in growth induction of fleshy fruits.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Duplicação Gênica/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Frutas/enzimologia , Solanum lycopersicum/enzimologia , Modelos Biológicos
20.
Plant Physiol ; 153(4): 1539-54, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20571114

RESUMO

Suberin is a protective hydrophobic barrier consisting of phenolics, glycerol, and a variety of fatty acid derivatives, including C18:0-C22:0 primary fatty alcohols. An eight-member gene family encoding alcohol-forming fatty acyl-coenzyme A reductases (FARs) has been identified in Arabidopsis (Arabidopsis thaliana). Promoter-driven expression of the beta-glucuronidase reporter gene indicated that three of these genes, FAR1(At5g22500), FAR4(At3g44540), and FAR5(At3g44550), are expressed in root endodermal cells. The three genes were transcriptionally induced by wounding and salt stress. These patterns of gene expression coincide with known sites of suberin deposition. We then characterized a set of mutants with T-DNA insertions in FAR1, FAR4, or FAR5 and found that the suberin compositions of roots and seed coats were modified in each far mutant. Specifically, C18:0-OH was reduced in far5-1, C20:0-OH was reduced in far4-1, and C22:0-OH was reduced in far1-1. We also analyzed the composition of polymer-bound lipids of leaves before and after wounding and found that the basal levels of C18:0-C22:0 primary alcohols in wild-type leaves were increased by wounding. In contrast, C18:0-OH and C22:0-OH were not increased by wounding in far5-1 and far1-1 mutants, respectively. Heterologous expression of FAR1, FAR4, and FAR5 in yeast confirmed that they are indeed active alcohol-forming FARs with distinct, but overlapping, chain length specificities ranging from C18:0 to C24:0. Altogether, these results indicate that Arabidopsis FAR1, FAR4, and FAR5 generate the fatty alcohols found in root, seed coat, and wound-induced leaf tissue.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Álcoois Graxos/metabolismo , Lipídeos/biossíntese , Proteínas Nucleares/metabolismo , Aldeído Oxirredutases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Mutagênese Insercional , Mutação , Proteínas Nucleares/genética , Raízes de Plantas/enzimologia , RNA de Plantas/genética , Sementes/enzimologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...